Skip to main content
Log in

Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The Compass/BeiDou system is currently being built as a navigation constellation consisting of 16 navigation satellites. Construction of these satellites will significantly increase the number of visible satellites over the Chinese mainland and improve the geometry of satellite positioning. We obtained data by simulation and measurements to analyze the influence of BeiDou regarding the longest observation arc and the ionosphere piercing point distribution. A regional ionosphere delay model is built using data measured by BeiDou only, global positioning system (GPS) only, and the dual-satellite system. The results show that the model accuracy for BeiDou only is as accurate as the single GPS system in the middle and lower latitudes, while a deviation becomes noticeable at high latitudes and over marginal areas where observations are fewer due to lack of BeiDou satellites. With the current distribution of the satellites and tracking stations, it appears that the dual-satellite system could significantly improve the ionospheric model in China and the accuracy of differential code bias (DCB) determination. The experimental results also show that the BeiDou satellite DCB is quite stable, with a monthly maximum change of 1.8 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alizadeh MM, Schuh H, Todorova S, Schmidt M (2011) Global ionosphere maps of VTEC from GNSS, satellite altimetry, and formosat-3/COSMIC data. J Geod 85(12):975–987

    Article  Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscripta Geodaetica 18(6):280–289

    Google Scholar 

  • BeiDou (2012) BeiDou satellite navigation system network. http://www.beidou.gov.cn/

  • Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609

    Article  Google Scholar 

  • CODE (2012) Center for Orbit Determination in Europe. Astronomy Institute, University of Berne. http://www.aiub.unibe.ch/igs.html

  • Enge P, Walter T, Pullen S, Kee C, Chao YC, Tsai YJ (1996) Wide area augmentation of the global positioning system. Proc IEEE 84(8):1063–1088

    Article  Google Scholar 

  • Flohrer T, Choc R, Bastida B (2012) Classification of geosynchronous objects. GEN-DBLOG-00086-OPS-GR, issue 14, Feb., European Space Agency, ESA/ESOC, Darmstadt

  • Hatch R (1982) The synergism of GPS code and carrier measurements. Proceeding third international symposium on satellite Doppler positioning, New Mexico State University, Feb 8–12, 2: 1213–1231

  • Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen P (2012) Characterization of compass M-1 signals. GPS Solut 16(1):117–126

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orús R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Ángel A, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907

    Article  Google Scholar 

  • Hochegger G, Nava B, Radicella SM, Leitinger R (2000) A family of ionospheric models for different uses. Phys Chem Earth Part C 25(4):307–310

    Google Scholar 

  • Kim BC, Tinin MV (2011) Potentialities of multifrequency ionospheric correction in global navigation satellite systems. J Geod 85(3):159–169

    Article  Google Scholar 

  • Klobuchar J (1987) Ionospheric time-delay algorithm for single frequency GPS users. In: IEEE transactions on aerospace and electronic systems, AES 23(3):325–331

  • Lachapelle G, Hagglund J, Falkenberg W, Bellemare P, Casey M, Eaton M (1986) GPS land kinematic positioning experiments. Proceeding fourth international geodetic symposium on satellite positioning, Austin, Texas, April 28–May 2, 2: 1327–1344

  • Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci 23(4):483–492

    Article  Google Scholar 

  • Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69

    Article  Google Scholar 

  • Liu JB, Wang ZM, Zhang HP, Zhu WY (2008) Comparison and consistency research of regional ionospheric TEC models based on GPS measurements. J Wuhan Univ (Inf Sci) 33(5):479–483 (In Chinese)

    Google Scholar 

  • Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the earth’s ionospheric total electron content using the GPS global network. Proceedings ION-GPS-1993, Institute of Navigation, Salt Lake City, 1323–1332

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS derived ionospheric total electron content measurements. Radio Sci 33(3):565–583

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222

    Article  Google Scholar 

  • Øvstedal O (2002) Absolute positioning with single frequency GPS receivers. GPS Solut 5(4):33–44

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph.D. dissertation, Bern: The University of Bern

  • Schaer S, Beutler G, Rothacher M (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. Proceedings of the IGS AC Workshop, Silver Spring, MD, USA, 181–192

  • Schunk RW, Scherliess L, Sojka JJ et al (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci, 39: RS1S02. doi:10.1029/2002RS002794

  • Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of BeiDou satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086

    Article  Google Scholar 

  • Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119

    Article  Google Scholar 

  • Venkataratnam D, Sarma AD (2012) Modeling of low latitude ionosphere using GPS data with SHF model. Geosci Remote Sens IEEE Trans 50(3):972–980

    Article  Google Scholar 

  • Weimer DR (2001) An improved model of ionospheric electric potentials including substorm perturbations and application to the geospace environment modeling November 24, 1996, event. J Geophys Res: Space Phys (1978–2012), 106(A1): 407–416

  • Wild U (1994) Ionosphere and satellite systems: permanent GPS tracking data for modelling and monitoring. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 48

  • Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the COMPASS satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819

    Article  Google Scholar 

  • Yuan Y, Ou J (2002) Differential areas for differential stations (DADS): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036

    Article  Google Scholar 

  • Zhang HP (2006) Monitoring and research on ionosphere using Chinese ground based GPS network. Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the GPS satellite products offered by IGS, ionospheric and DCB products offered by CODE. This study was supported by the National Natural Science Foundation of China (41404010 and 41374034), the National High Technology Research and Development Program of China (2013AA122502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-wei Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Song, Ww., Yao, Yb. et al. Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China. GPS Solut 19, 649–658 (2015). https://doi.org/10.1007/s10291-014-0419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0419-z

Keywords

Navigation