Skip to main content
Log in

Evaluation of COMPASS ionospheric grid

  • GNSS In Progress
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

As an important component of the augmentation service, the ionospheric grid contributes to improving single-frequency positioning accuracy. The ionospheric delay corrections are broadcast as vertical delay estimates at specified ionospheric grid points (IGPs) for most satellite-based augmentation system, where the IGPs are predefined with a resolution of 5° and 5° in latitude and longitude. Different from the general strategy, the COMPASS IGPs are predefined with a resolution of 2.5° and 5° in latitude and longitude. The need for this special IGPs distribution is investigated with experiments using real data. The performance of the COMPASS ionospheric grid is analyzed in terms of accuracy and availability. Comparing the performance of the special IGPs distribution with that of 5° × 5° IGPs, the results show that the ionospheric correction improves by 0.2 m and the 3D positioning accuracy improves by 1 m in middle-low latitude regions. The RMS of the COMPASS grid ionospheric correction accuracy is better than 0.5 m in most regions of the China mainland, and the availability is better than 95 % except in the northeast, northwest and outside China. In addition, we investigated the performance of the method that combined the inverse distance weighted and spherical harmonics grid modeling algorithm. Simulations show that the new method clearly improves grid availability. The mean availability in the mainland is better than 99 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beutler G, Rothacher M, Schaer S, Springer T, Kouba J, Neilan R (1999) The International GPS Service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res 23(4):631–653

    Article  Google Scholar 

  • Cao Y, Zhou S, Hu X, Wu B, Zhou S, Liu L, Su R, Chang Z, He F, Zhou J (2012) The wide-area difference system for the regional satellite navigation system of COMPASS. Sci China Phys Mech Astron 55(7):1307–1315

    Article  Google Scholar 

  • Chen J, Wu B, Hu X, Zhou S, Wu X, Xing N (2012) COMPASS/Beidou: system status and initial service; IGS Workshop on GNSS Biases, 18–19 Jan 2012, University of Bern, Switzerland

  • Conker RS, El-Arini MB, Albertson TW, Klobuchar JA, Doherty PH (1997) Description and assessment of real-time algorithms to estimate the ionospheric error bounds for WAAS. Navigation 44(1):77–87

    Article  Google Scholar 

  • CSNO (2012) Beidou navigation satellite system signal in space interface control document, open service signal B1I (Version 1.0), China satellite navigation officer December 2012. http://en.beidou.gov.cn/

  • Fan J, Wu X, Li Y, Wei G (2013a) COMPASS satellites DCB parameter accuracy assessment base on tri-frequency data. Chin Space Sci Technol 33(4):62–70

    Google Scholar 

  • Fan J, Wu X, Dong E, Zhao H, Kan H, Xie J (2013b) Ionospheric grid modeling of regional satellite navigation system with spherical harmonics. In: Proceedings of China Satellite Navigation Conference (CSNC) 2013, pp 113–122

  • Han C, Yang Y, Cai Z (2011) BeiDou navigation satellite system and its timescales. Metrologia 48(4):213–218

    Article  Google Scholar 

  • Hansen A, Peterson E, Walter T, & Enge P (2000). Correlation structure of ionospheric estimation and correction for WAAS. In: Proceedings of ION NTM 2000, Institute of Navigation, Anaheim, CA, January, pp 454–463

  • Hernandez P, Juan JM, Sanz J, Orus R, Garcia A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275

    Article  Google Scholar 

  • Huang Z, Yuan H (2008) New algorithm and results of WAAS ionospheric delay correction. Chin J Space Sci 28(2):132–136

    Google Scholar 

  • Mendillo M, Huang C, Pi X, Rishbeth H, Meier R (2005) The global ionospheric asymmetry in total electron content. J Atmos Solar Terr Phys 67(15):1377–1387

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/Beidou-2 regional navigation satellite system. GPS Solut 17(2):211–222

    Article  Google Scholar 

  • Prasad N, Sarma AD (2004) Ionospheric time delay estimation using IDW grid model for GAGAN. J Indian Geophys Union 8(4):319–327

    Google Scholar 

  • Rishbeth H, Müller-Wodarg I, Zou L, Fuller-Rowell T, Millward G, Moffett R, Aylward A (2000) Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann Geophys 18(8):945–956

    Article  Google Scholar 

  • RTCA DO-229D (2006) Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment

  • Skone S, Yousuf R, Coster A (2004) Performance evaluation of the wide area augmentation system for ionospheric storm events. J Glob Position Syst 3(1–2):251–258

    Article  Google Scholar 

  • Wang G, Ji J, Feng L, Wu X (2004) Analysis of EGNOS ionospheric correction. Sci Surv Mapp 29(5):45–49

    Google Scholar 

  • Wanninger L (1995) Enhancing differential GPS using regional ionospheric error models. Bull Géodésique 69(4):283–291

    Article  Google Scholar 

  • Wu X, Han C, Ping J (2013a) Monitoring and analysis of regional ionosphere with GEO satellite observations. Acta Geodaetica Cartogr Sin 42(1):13–18

    Google Scholar 

  • Wu X, Hu X, Wang G, Zhong H, Tang C (2013b) Evaluation of COMPASS ionospheric model in GNSS positioning. Adv Space Res 51(6):959–968

    Article  Google Scholar 

  • Xing N, Wu X, Hu X, Su R (2012) The analysis of secular change in COMPASS DCB. In: Proceedings China Satellite Navigation Conference (CSNC) 2012, pp 243–251

  • Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the COMPASS satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819

    Article  Google Scholar 

  • Zhou S, Cao Y, Zhou J, Hu X, Tang C, Liu L, Guo R, He F, Chen J, Wu B (2012) Positioning accuracy assessment for the 4GEO/5IGSO/2MEO constellation of COMPASS. Sci China Phys Mech Astron 55(12):2290–2299

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their thoughtful reviews, and Professor Hu, Professor Chen and Doctor Li for their helpful comments. Thanks the IGS official website for the free data download service. This work was supported by the National Natural Science Foundation of China (41204023, 11203059, 41204022, 41174027), the National High Technology Research and Development Program of China (2013AA122402) and China Satellite Navigation Conference Commission (CSNC2012-QY-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhou, J., Tang, B. et al. Evaluation of COMPASS ionospheric grid. GPS Solut 18, 639–649 (2014). https://doi.org/10.1007/s10291-014-0394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0394-4

Keywords

Navigation