Skip to main content
Log in

Polyhedral approximation of ellipsoidal uncertainty sets via extended formulations: a computational case study

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2016

Abstract

Robust optimization is an important technique to immunize optimization problems against data uncertainty. In the case of a linear program and an ellipsoidal uncertainty set, the robust counterpart turns into a second-order cone program. In this work, we investigate the efficiency of linearizing the second-order cone constraints of the latter. This is done using the optimal linear outer-approximation approach by Ben-Tal and Nemirovski (Math Oper Res 26:193–205, 2001) from which we derive an optimal inner approximation of the second-order cone. We examine the performance of this approach on various benchmark sets including portfolio optimization instances as well as (robustified versions of) the MIPLIB and the SNDlib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program A 88:411–424

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) On polyhedral approximations of the second-order cone. Math Oper Res 26:193–205

    Article  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press

  • Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program B 98:49–71

    Article  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  Google Scholar 

  • Bertsimas D, Sim M (2006) Tractable approximations to robust conic optimization problems. Math Program B 107:5–36

    Article  Google Scholar 

  • Bertsimas D, Pachamanovab D, Sim M (2004) Robust linear optimization under general norms. Oper Res Lett 32:510–516

    Article  Google Scholar 

  • Bertsimas D, Brown D, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

    Article  Google Scholar 

  • Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizábal CA (2009) Numerical optimization—theoretical and practical aspects. Springer, New York

    Google Scholar 

  • Boost C++ Libraries (2013) Boost random number library. http://www.boost.org/doc/libs/1_38_0/libs/random

  • Conforti M, Cornuéjols G, Zambelli G (2010) Extended formulations in combinatorial optimization. 4OR 8(1):1–48

    Article  Google Scholar 

  • Dolan E, Moré J (2002) Benchmarking optimization software with performance profiles. Math Program A 91(2):201–213

    Article  Google Scholar 

  • Fiorini S, Rothvoß T, Tiwary H (2012) Extended formulations for polygons. Discret Comput Geom 48(3):658–668

    Article  Google Scholar 

  • Gay M (1985) Electronic mail distribution of linear programming test problems. Math Program Soc COAL Bull 13:10–12. http://www.netlib.org/netlib/lp

  • Glineur F (2000) Computational experiments with a linear approximation of second-order cone optimization. Image Technical Report 001, Faculté Polytechnique de Mons

  • Glineur F (2001) Conic optimization: an elegenat framework for convex optimization. Belg J Oper Res Stat Comput Sci 41(1–2):5–28

    Google Scholar 

  • Gurobi Optimization, Inc (2013) Gurobi optimizer reference manual. http://www.gurobi.com

  • Kaibel V (2011) Extended formulations in combinatorial optimization. Optima 85:2–7

    Google Scholar 

  • Kaibel V, Pashkovich K (2011) Constructing extended formulations from reflection relations. Proc IPCO 2011:287–300

    Google Scholar 

  • Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby R, Danna E, Gamrath G, Gleixner A, Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy D, Wolter K (2011) MIPLIB 2010. Math Program Comput 3(2):103–163

    Article  Google Scholar 

  • Orlowski S, Pióro M, Tomaszewski A, Wessäly R (2007) SNDlib 1.0–survivable network design library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium

  • Vielma J, Ahmed S, Nemhauser GL (2008) A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programs. INFORMS J Comput 20(3):438–450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bärmann.

Additional information

Research reported in this paper was partially supported by NSF Grant CMMI-1300144, BMBF Grant 05M10WEC, WTT Grant 12190-1, DLR Grant 10-220210-C4 and ComplexWorld Research Network Grant.

An erratum to this article is available at http://dx.doi.org/10.1007/s10287-016-0269-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bärmann, A., Heidt, A., Martin, A. et al. Polyhedral approximation of ellipsoidal uncertainty sets via extended formulations: a computational case study. Comput Manag Sci 13, 151–193 (2016). https://doi.org/10.1007/s10287-015-0243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-015-0243-0

Keywords

Mathematics Subject Classification

Navigation