Skip to main content

Advertisement

Log in

A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

This paper describes a methodology for redesigning the clinical processes to manage diagnosis, follow-up, and response to treatment episodes of breast cancer. This methodology includes three fundamental elements: (1) identification of similar and contrasting cases that may be of clinical relevance based upon a target study, (2) codification of reports with standard medical terminologies, and (3) linking and indexing the structured reports obtained with different techniques in a common system. The combination of these elements should lead to improvements in the clinical management of breast cancer patients. The motivation for this work is the adaptation of the clinical processes for breast cancer created by the Valencian Community health authorities to the new techniques available for data processing. To achieve this adaptation, it was necessary to design nine Digital Imaging and Communications in Medicine (DICOM) structured report templates: six diagnosis templates and three summary templates that combine reports from clinical episodes. A prototype system is also described that links the lesion to the reports. Preliminary tests of the prototype have shown that the interoperability among the report templates allows correlating parameters from different reports. Further work is in progress to improve the methodology in order that it can be applied to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ratib O: Imaging informatics: From image management to image navigation. Yearb Med Inform 2009; 167–172

  2. Oakley J. Digital Imaging: A Primer for Radiographers, Radiologists and Health Care Professionals. Cambridge University Press, 2003.

  3. Prokosch HU, Dudeck J: Hospital information systems: Design and development characteristics, impact and future architecture. Elsevier health sciences, 1995

  4. Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling scalable virtual organizations. Int J High Perform Comput Appl 2001; 15(3):200–222.

    Article  Google Scholar 

  5. Oram A: Peer-to-Peer: Harnessing the power of disruptive technologies. O’Reilly Media, 2001

  6. National Institute of Standards and Technology. The NIST Definition of Cloud Computing. 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed 29 Jan 2013)

  7. Oster S, Langella S, Hastings S, Ervin D, Madduri R, Phillips J, Kurc T, Siebenlist F, Covitz P, Shanbhag K, Foster I, Saltz J. caGrid 1.0: An enterprise grid infrastructure for biomedical research. J Am Med Inform Assoc 2008; 15:138–149.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Natter MD, Quan J, Ortiz DM, et al. An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Inform Assoc 2013; 20:172–179.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ohno-Machado L, Bafna V, Boxwala AA, et al. iDASH: Integrating data for analysis, anonymization, and sharing. J Am Med Inform Assoc 2012; 19:196–201.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Channin DS, Mongkolwat P, Kleper V, Rubin DL. Computing human image annotation. Conf Proc IEEE Eng Med Biol Soc 2009; 1:7065–8.

    Google Scholar 

  11. Sittig DF, Wright A, Osheroff JA, et al. Grand challenges in clinical decision support. J Biomed Inform 2008; 41(2):387–392.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst 2012; 36(5):3029–3049.

    Article  PubMed  Google Scholar 

  13. Rubin DL. Creating and curating a terminology for radiology: Ontology modeling and analysis. J Digit Imaging 2008; 21(4):355–362.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kahn CE, Jr., Langlotz CP, Burnside ES, Carrino JA, Channin DS, Hovsepian DM, et al. Toward best practices in radiology reporting. Radiology 2009; 252(3):852–856.

    Article  PubMed  Google Scholar 

  15. Taira PK, Soderlang SG, JAbovits RM. Automatic structuring of radiology free-text reports. Radiographics 2001; 21(1); 237–245.

    Article  CAS  PubMed  Google Scholar 

  16. Fujii H, Yamagishi H, Ando Y, Tsukamoto N, Kawaguchi O, Kasamatsu T, et al. Structuring of free-text diagnostic report. Stud. Health Technol. Inform. 2007; 129: 669–673.

    PubMed  Google Scholar 

  17. Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown SH, Speroff T. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011; 306(8):848–855.

    Article  CAS  PubMed  Google Scholar 

  18. Clunie DA: DICOM structured reporting. PixelMed Publishing, 2000

  19. D’Avolio LW, Nguyen TM, Farwell WR, Chen Y, Fitzmeyer F, Harris OM, Fiore LD. Evaluation of a generalizable approach to clinical information retrieval using the automated retrieval console (ARC). J Am Med Inform Assoc 2012; 17:375–382.

    Article  Google Scholar 

  20. Napel SA, Beaulieu CF, Redriguez C, Cui J, Xu J, Grupta A, et al. Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results. Radiology 2010; 256(1): 243–252.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Langlotz CP. RadLex: A new method for indexing online educational materials. Radiographics 2006; 26(6):1595–1597.

    Article  PubMed  Google Scholar 

  22. Crestania F, Vegas J, de la Fuente P. A graphical user interface for the retrieval of hierarchically structured documents. Inf Process Manag 2004; 40(2):269–289.

    Article  Google Scholar 

  23. Weiss DL, Langlotz CP. Structured reporting: Patient care enhancement or productivity nightmare? Radiology 2008. 249(3):739–747.

    Article  PubMed  Google Scholar 

  24. Yen PY, Bakken S. Review of health information technology usability study methodologies. J Am Med Inform Assoc 2012; 19(3):413–422.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Patrick R, Julien G, Christian L, Antoine G. Automatic medical encoding with SNOMED categories. BMC Med Inform Decis Mak 2008; 8(Suppl 1): S1–S6.

    Article  Google Scholar 

  26. Lopez-Garcia P, Boeker M, Illarramendi A, Schulz S. Usability-driven pruning of large ontologies: The case of SNOMED CT, J Am Med Inform Assoc 2012; 19:e102-e109.

    Article  PubMed Central  PubMed  Google Scholar 

  27. World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. http://apps.who.int/classifications/apps/icd/icd10online/ (accessed 29 Jan 2013)

  28. American College of Radiology (ACR) Breast Imaging Reporting and Data System Atlas (BI-RADS® Atlas)

  29. World Health Organization. International Classification of Diseases for Oncology, 3rd Edition (ICD-O-3). http://www.who.int/classifications/icd/adaptations/oncology/en/index.html (accessed 29 Jan 2013)

  30. Greene FL. TNM: Our language of cancer. CA Cancer J Clin 2004; 54(3):129–130.

    Article  PubMed  Google Scholar 

  31. American Joint Committee of Cancer (AJCC). AJCC Cancer Staging Manual. Seventh Edition. Springer, 2010

  32. Hussein R, Engelmann U, Schroeter A, Meinzer HP. DICOM structured reporting: Part 1. Overview and characteristics, Radiographics 2004; 24(3):891–896.

    Article  PubMed  Google Scholar 

  33. Sluis D, Lee KP, Mankovich N. DICOM SR - integrating structured data into clinical information systems. Medicamundi 2002; 46(2):31–36.

    Google Scholar 

  34. Percha B, Nassif H, Lipson J, Burnside E, Rubin D. Automatic classification of mammography reports by BI-RADS breast tissue composition class. J Am Med Inform Assoc 2012; 19(5):913–916.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ciatto S, Houssami N, Apruzzese A, Bassetti E, Brancato B, Carozzi F, Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B, Risso G, Russo F, Scorsolini A. Reader variability in reporting breast imaging according to BI-RADS assessment categories (the Florence experience). Breast 2006; 15(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  36. National Electrical Manufacturers Association (NEMA). Digital Imaging and Communications in Medicine (DICOM). Part 16: Content Mapping Resource. http://medical.nema.org/dicom/2004/04_16PU.PDF (accessed 29 Jan 2013)

  37. Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shvo AS. HL7 clinical document architecture, release 2. J Am Med Inform Assoc 2006; 13:30–39.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Blanquer I, Hernández V, Meseguer JE, Segrelles D. Content-based organisation of virtual repositories of DICOM objects. Future Gener Comput Syst 2009; 25(6):627–637.

    Article  Google Scholar 

  39. Blanquer I, Hernández V, Segrelles D, Torres E. Enhancing privacy and authorization control scalability in the grid through ontologies. IEEE Trans Inf Technol Biomed 2009; 12(1):16–24.

    Article  Google Scholar 

  40. Salavert J, Maestre C, Segrelles D, Blanquer I, Hernández V, Medina R, Martí L: Grid prototype to support cancer of breast diagnostics in clinic practice. Proc of the 4th. Iberian Grid Infrastructure Conf. Netbiblo, 2010

  41. Segrelles D, Franco JM, Medina R, Blanquer I, Salavert J, Hernandez V, Martí L, Díaz G, Ramos R, Guevara MA, González N, Loureiro J, Ramos I. Exchanging data for breast cancer diagnosis on heterogeneous grid platforms. Computing and Informatics 2012; 31(1):3–15.

    Google Scholar 

  42. Ali MS, Consens M, Lalmas M. Extended structural relevance framework: A framework for evaluating structured document retrieval. Inf Retrieval 2012; 15:558–590.

    Article  Google Scholar 

  43. Welter P, Riesmeier J, Fischer B, Grouls C, Kuhl C, Deserno, TM. Bridging the integration gap between imaging and information systems: A uniform data concept for content-based image retrieval in computer-aided diagnosis. J Am Med Inform Assoc 2011; 18:506–510.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Jenkins CW. Application prototyping: A case study. Perform Eval Rev 1981; 10(1):21–27.

    Article  Google Scholar 

  45. Generalitat Valenciana. Conselleria de Sanitat. Oncoguía de Cáncer de Mama Comunidad Valenciana. http://publicaciones.san.gva.es/publicaciones/documentos/V.2478-2006.pdf (accessed 29 Jan 2013)

  46. Maestre C, Segrelles-Quilis JD, Torres E, Blanquer I, Medina R, Hernández V, Martí L. Assessing the usability of a science gateway for medical knowledge bases with TRENCADIS. J Grid Computing 2012; 10:665–688.

    Article  Google Scholar 

  47. Lewis J. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. Int J Hum-Comput Interact 1995; 7(1):57–78.

    Article  Google Scholar 

  48. Lewis JR. Psychometric evaluation of the PSSUQ using data from five years of usability studies. Int J Hum-Comput Interact 2002; 14(3–4):463–488.

    Article  Google Scholar 

  49. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52(3–4):591–611.

    Article  Google Scholar 

  50. Chhatwal J, Alagoz O, Lindstrom MJ, Kahn Jr CE, Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 2009; 192:1117–1127.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the subject matter experts for sharing their insights through this study. We are especially appreciative of the efforts of the Radiology Unit and Medical Oncology Unit teams at the University Hospital Dr. Peset. This work was partially supported by the Vicerectorat d’Investigació de la Universitat Politècnica de València (UPVLC) to develop the project “Mejora del proceso diagnóstico del cáncer de mama” with reference UPV-FE-2013-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Damian Segrelles Quilis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina García, R., Torres Serrano, E., Segrelles Quilis, J.D. et al. A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer. J Digit Imaging 28, 132–145 (2015). https://doi.org/10.1007/s10278-014-9728-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9728-6

Keywords

Navigation