Skip to main content

Advertisement

Log in

Computerized Breast Mass Detection Using Multi-Scale Hessian-Based Analysis for Dynamic Contrast-Enhanced MRI

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

This study aimed to investigate a computer-aided system for detecting breast masses using dynamic contrast-enhanced magnetic resonance imaging for clinical use. Detection performance of the system was analyzed on 61 biopsy-confirmed lesions (21 benign and 40 malignant lesions) in 34 women. The breast region was determined using the demons deformable algorithm. After the suspicious tissues were identified by kinetic feature (area under the curve) and the fuzzy c-means clustering method, all breast masses were detected based on the rotation-invariant and multi-scale blob characteristics. Subsequently, the masses were further distinguished from other detected non-tumor regions (false positives). Free-response operating characteristics (FROC) curve and detection rate were used to evaluate the detection performance. Using the combined features, including blob, enhancement, morphologic, and texture features with 10-fold cross validation, the mass detection rate was 100 % (61/61) with 15.15 false positives per case and 91.80 % (56/61) with 4.56 false positives per case. In conclusion, the proposed computer-aided detection system can help radiologists reduce inter-observer variability and the cost associated with detection of suspicious lesions from a large number of images. Our results illustrated that breast masses can be efficiently detected and that enhancement and morphologic characteristics were useful for reducing non-tumor regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, et al: SEER Cancer Statistics Review, 1975–2008. National Cancer Institute, Bethesda, 2011

    Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 61:69–90, 2011

    Article  PubMed  Google Scholar 

  3. Roubidoux MA, Helvie MA, Lai NE, Paramagul C: Bilateral breast cancer: early detection with mammography. Radiology 196:427–431, 1995

    Article  PubMed  CAS  Google Scholar 

  4. Kolb TM, Lichy J, Newhouse JH: Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175, 2002

    Article  PubMed  Google Scholar 

  5. Kelly KM, Dean J, Comulada WS, Lee SJ: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 20:734–742, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mogatadakala KV, Donohue KD, Piccoli CW, Forsberg F: Detection of breast lesion regions in ultrasound images using wavelets and order statistics. Med Phys 33:840–849, 2006

    Article  PubMed  Google Scholar 

  7. Muradali D, Ghai S, Bukhanov K, Kulkarni S: Nonenhancing breast malignancies on MRI: sonographic and pathologic correlation. Am J Roentgenol 185:481–487, 2005

    Article  Google Scholar 

  8. Teifke A, Hlawatsch A, Beier T, Vomweg TW, Schadmand S, Schmidt M, et al: Undetected malignancies of the breast: dynamic contrast-enhanced MR imaging at 1.0 T. Radiology 224:881–888, 2002

    Article  PubMed  Google Scholar 

  9. Bluemke DA, Gatsonis CA, Chen MH, DeAngelis GA, DeBruhl N, Harms S, et al: Magnetic resonance imaging of the breast prior to biopsy. JAMA 292:2735–2742, 2004

    Article  PubMed  CAS  Google Scholar 

  10. Warner E, Plewes DB, Shumak RS, Catzavelos GC, Di Prospero LS, Yaffe MJ, et al: Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer. J Clin Oncol 19:3524–3531, 2001

    PubMed  CAS  Google Scholar 

  11. Yeh ED: Breast magnetic resonance imaging: current clinical indications. Magn Reson Imaging Clin N Am 18:155–169, 2010. vii

    Article  PubMed  Google Scholar 

  12. Lin M, Chen J-H, Nalcioglu O, Su M-YL: Automatic template-based breast segmentation on MRI using nonrigid registration algorithms. In: International Society for Magnetic Resonance in Medicine (ISMRM) conference, 2012, pp. 2569, City

  13. Galbraith SM, Lodge MA, Taylor NJ, Rustin GJS, Bentzen S, Stirling JJ, et al: Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142, 2002

    Article  PubMed  Google Scholar 

  14. Su MY, Nie K, Chen JH, Chan S, Chau MKI, Yu HJ, et al: Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med Phys 35:5253–5262, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kroon D-J, Slump CH: MRI modality transformation in demon registration. In: IEEE International Symposium on Biomedical Imaging, ISBI ‘09. IEEE Signal Processing Society, City, 2009, pp. 963–966

  16. Hayton P, Brady M, Tarassenko L, Moore N: Analysis of dynamic MR breast images using a model of contrast enhancement. Med Image Anal 1:207–224, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Chang YC, Huang YH, Huang CS, Chang PK, Chen JH, Chang RF: Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Magn Reson Imaging 20:312–322, 2012

    Article  Google Scholar 

  18. Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering, Medical Image Computing and Computer-Assisted Intervention - Miccai‘98 1496, 1998, pp. 130–137

  19. Jiamin L, White JM, Summers RM: Automated detection of blob structures by Hessian analysis and object scale. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, City, 2010, pp. 841–844

  20. Jia T, Zhao D-Z, Wei Y, Zhu X-H, Wang X: Computer-aided lung nodule detection based on CT images. In: Complex Medical Engineering, 2007 CME 2007 IEEE/ICME International Conference on, City, 2007, pp. 816–819

  21. Okada K, Akdemir U: Blob segmentation using joint space-intensity likelihood ratio test: application to 3D tumor segmentation. In: Computer Vision and Pattern Recognition, 2005 CVPR 2005 I.E. Computer Society Conference on, vol. 2, City, 2005, pp. 437–444

  22. Rosenfel A: Connectivity in digital pictures. J ACM 17:146, 1970

    Article  Google Scholar 

  23. Rosenfel A, Pfaltz JL: Sequential operations in digital picture processing. J ACM 13:471, 1966

    Article  Google Scholar 

  24. Chen JH, Chang RF, Chang-Chien KC, Takada E, Huang CS, Chou YH, et al: Rapid image stitching and computer-aided detection for multipass automated breast ultrasound. Med Phys 37:2063–2073, 2010

    Article  PubMed  Google Scholar 

  25. Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571, 2007

    Article  PubMed  Google Scholar 

  26. Chang RF, Moon WK, Shen YW, Huang CS, Chiang LR: Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Ultrasound Med Biol 37:539–548, 2011

    Article  PubMed  Google Scholar 

  27. Meinel LA, Stolpen AH, Berbaum KS, Fajardo LL, Reinhardt JM: Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system. J Magn Reson Imaging 25:89–95, 2007

    Article  PubMed  Google Scholar 

  28. Haralick RM: Statistical and structural approaches to texture. Proc IEEE 67:786–804, 1979

    Article  Google Scholar 

  29. Field AP: Discovering Statistics Using SPSS. SAGE Publications, London, 2009

    Google Scholar 

  30. Bengio Y, Grandvalet Y: No unbiased estimator of the variance of K-fold cross-validation. J Mach Learn Res 5:1089–1105, 2004

    Google Scholar 

  31. Yu SY, Guan L: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans Med Imaging 19:115–126, 2000

    Article  PubMed  CAS  Google Scholar 

  32. Chakraborty DP: Validation and statistical power comparison of methods for analyzing free-response observer performance studies. Acad Radiol 15:1554–1566, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chakraborty DP, Breatnach ES, Yester MV, Soto B, Barnes GT, Fraser RG: Digital and conventional chest imaging: a modified ROC study of observer performance using simulated nodules. Radiology 158:35–39, 1986

    Article  PubMed  CAS  Google Scholar 

  34. Shimauchi A, Jansen SA, Abe H, Jaskowiak N, Schmidt RA, Newstead GM: Breast cancers not detected at MRI: review of false-negative lesions. Am J Roentgenol 194:1674–1679, 2010

    Article  Google Scholar 

  35. Anderson BO, Shyyan R, Eniu A, Smith RA, Yip CH, Bese NS, et al: Breast cancer in limited-resource countries: an overview of the Breast Health Global Initiative 2005 guidelines. Breast J 12(Suppl 1):S3–S15, 2006

    Article  PubMed  Google Scholar 

  36. Kuhl CK, Schrading S, Bieling HB, Wardelmann E, Leutner CC, Koenig R, et al: MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492, 2007

    Article  PubMed  Google Scholar 

  37. Renz DM, Bottcher J, Diekmann F, Poellinger A, Maurer MH, Pfeil A, et al: Detection and classification of contrast-enhancing masses by a fully automatic computer-assisted diagnosis system for breast MRI. J Magn Reson Imaging 35:1077–1088, 2012

    Article  PubMed  Google Scholar 

  38. Pisano ED, Hendrick RE, Yaffe MJ, Baum JK, Acharyya S, Cormack JB, et al: Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology 246:376–383, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen JH, Moon WK, Shen YW, Huang CS, Luo SC, Kuzucan A, et al: Comparative study of density analysis using automated whole breast ultrasound and MRI. Med Phys 38:382–389, 2011

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dorr RT, Alberts DS: Quantitation of ellipsoid tumor areas using a circumferential measuring device. Med Oncol Tumor Pharmacother 5:249–251, 1988

    PubMed  CAS  Google Scholar 

  41. Liberman L, Mason G, Morris EA, Dershaw DD: Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size. AJR Am J Roentgenol 186:426–430, 2006

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China (NSC 101-2221-E-002-068-MY3), Ministry of Economic Affairs (102-EC-17-A-19-S1-164), and Ministry of Education (AE-00-00-06) of the Republic of China for the financial support

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeun-Chung Chang or Ruey-Feng Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Chang, YC., Huang, CS. et al. Computerized Breast Mass Detection Using Multi-Scale Hessian-Based Analysis for Dynamic Contrast-Enhanced MRI. J Digit Imaging 27, 649–660 (2014). https://doi.org/10.1007/s10278-014-9681-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9681-4

Keywords

Navigation