Skip to main content
Log in

Petri nets in systems biology

  • Special Section Paper
  • Published:
Software & Systems Modeling Aims and scope Submit manuscript

Abstract

Petri nets are used in many areas. This article discusses the application of Petri nets in systems biology. Using an example from biochemistry, concepts for the automatic decomposition of biochemical systems are introduced. The article focuses on those concepts that fulfill steady-state conditions. Interestingly, all the concepts are based on minimal, semi-positive transition invariants. The article describes, which new definitions for network decomposition can be derived and how they can be interpreted in the context of biology. This is illustrated with the example of the citric acid cycle, for which a new metabolic pathway could be predicted with the help of such an analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackermann, J., Koch, I.: Quantitative analysis. In: Koch, I., Reisig, W., Schreiber, F. (eds.) Modeling in Systems Biology: The Petri Net Approach, pp. 153–178. Springer, Berlin (2011) (Comp. Biol.)

  2. Ackermann, J., et al.: Reduction techniques for network validation in systems biology. J. Theor. Biol. 315, 71–80 (2012)

    Article  MathSciNet  Google Scholar 

  3. Backhaus, K., et al.: Multivariate Analysis Methods. An Application-Oriented Introduction, 10th edn. Springer, Berlin (2003) (in German)

  4. Bahi-Jaber, N., Pontier, D.: Modeling transmission of directly transmitted infectious diseases using colored stochastic Petri nets. Math. Biosci. 185, 1–13 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. W.H. Freeman, New York (2002)

    Google Scholar 

  6. Bortfeldt, R.H., Schuster, S., Koch, I.: Exhaustive analysis of the modular structure of the spliceosomal assembly network: a Petri net approach. In Silico Biol. 10, 89–123 (2010). doi:10.3233/ISB-2010-0419

    Google Scholar 

  7. Chaouiya, C.: Petri net modelling of biochemical systems. Brief. Bioinform. 8.4, 210–219 (2007)

    Article  Google Scholar 

  8. Clarke, B.L.: Complete set of steady states for the general stoichiometric dynamical system. J. Chem. Phys. 75, 4970 (1981)

    Article  MathSciNet  Google Scholar 

  9. Clarke, B.L.: Stoichiometric network analysis. Cell Biophys. 12, 237–253 (1988)

    Article  Google Scholar 

  10. Doi, A., et al.: Simulation based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol. 6.1–2, 1–13 (2006)

    Google Scholar 

  11. Einloft, J., et al.: MonaLisa—visualization and analysis of functional modules in biochemical networks. Bioinformatics 29, 1469–1470 (2013)

    Article  Google Scholar 

  12. Esparza, J.: Decidability and complexity of Petri net problems—an introduction. LNCS 1491, 374–428 (1998)

    Google Scholar 

  13. Fieber, M.: Design and Implementation of a Generic and Adaptive Tool for Graph Manipulation. Master’s Thesis. Brandenburg University of Technology at Cottbus (2004) (in German)

  14. Finney, A., Hucka, M.: Systems biology markup language: level 2 and beyond. Biochem. Soc. Trans. 31, 1472–1473 (2003)

    Article  Google Scholar 

  15. Fischer, E., Sauer, U.: A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278.47, 46446–46451 (2003)

    Article  Google Scholar 

  16. Förster, J., et al.: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003)

    Article  Google Scholar 

  17. Genrich, H., Küffner, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. J. Softw. Tools Technol. Transf. 3.4, 394–404 (2001)

    Google Scholar 

  18. Grafahrend-Belau, E.: Classification of T-Invariants in Biochemical Petri Nets Based on Different Cluster Analysis Techniques. Master’s Thesis. Technical University of Applied Sciences Berlin (2006) (in German)

  19. Grafahrend-Belau, E., et al.: Modularisation of biochemical networks through hierarchical cluster analysis of T-invariants of biochemical Petri nets. BMC Bioinform. 9, 90 (2008)

    Article  Google Scholar 

  20. Grunwald, S., et al.: Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Biosystems 92, 189–205 (2008)

    Article  Google Scholar 

  21. Heinrich, R., Rapoport, T.A.: A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89–95 (1974)

    Article  Google Scholar 

  22. Hoops, S., et al.: COPASI—a COmplex PAthway SImulator. Bioinformatics 22.24, 3067–3074 (2006)

    Article  Google Scholar 

  23. Kielbassa, J., et al.: Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets. Comput. Biol. Chem. 33, 46–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Klamt, S., Gilles, E.D.: Minimal cut sets in biochemical reaction networks. Bioinformatics 20.2, 226–234 (2004)

    Article  Google Scholar 

  25. Koch, I.: Petri Nets and GRN models. In: Das, S., et al. (eds.) Handbook of Research on Computational Methodologies in Gene Regulatory Networks, pp. 604–637. IGI Global, Hershey, NY (2010)

  26. Koch, I., Junker, B.H., Heiner, M.: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21, 1219–1226 (2005)

    Article  Google Scholar 

  27. Koch, I., Reisig, W., Schreiber, F.: Modeling in Systems Biology: The Petri Net Approach. Springer, Berlin (2011). (Comp. Biol.)

    Book  Google Scholar 

  28. Larhlimi, A., Bockmayr, A.: A new constraint-based description of the steady-state flux cone of metabolic networks. Disc. Appl. Math. 157, 2257–2266 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lautenbach, K.: Exact conditions of liveness for a class of Petri nets. Berichte der GMD 82. Sankt Augustin: Gesellschaft für Mathematik und Datenverarbeitung (1973) (in German)

  30. Liao, J., Hou, S.-Y., Chao, Y.-P.: Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52, 129–140 (1996)

    Article  Google Scholar 

  31. Matsuno, H., et al.: Hybrid Petri net representation of gene regulatory network. Proc. Pac. Symp. Biocomput. 5, 338–349 (2000)

    Google Scholar 

  32. MTZ-Stiftung. Definition of systems biology (2012). http://www.mtzstiftung.de/die_mtz_awards_projekte/mtz_bioquant_award/definition_systembiologie/. (in German)

  33. Mura, I.: Stochastic modeling. In: Koch, I., Reisig, W., Schreiber, F. (eds.) Modeling in Systems Biology: The Petri Net Approach, pp. 121–152. Springer, Berlin (2011) (Comp. Biol)

  34. Nagasaki, N., et al.: Cell illustrator 4.0: a computational platform for systems biology. Stud. Health Technol. Inform. 162, 160–181 (2011)

    Google Scholar 

  35. Orth, J.D.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol. Syst. Biol. 7, 535 (2011). doi:10.1038/msb.65

    Article  Google Scholar 

  36. Peleg, M., Rubin, D., Altman, R.B.: Using Petri net tools to study properties and dynamics of biological systems. J. Am. Med. Inf. Assoc. 12.2, 369–371 (2005)

    Google Scholar 

  37. Pèrés, S., et al.: ACoM: a classification method for elementary flux modes based on motif finding. Biosystems 103(3), 410–419 (2011)

    Article  Google Scholar 

  38. Pfeiffer, T., et al.: METATOOL: for studying metabolic networks. Bioinformatics 15.3, 251–257 (1999)

    Article  Google Scholar 

  39. Popova-Zeugmann, L., Heiner, M., Koch, I.: Time Petri nets for modeling and analysis of biochemical networks. Fundam. Inform. 67, 149–162 (2005)

    MATH  MathSciNet  Google Scholar 

  40. Priami, C., et al.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Proc. Lett. 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Reddy, V.N.: Modeling Biological Pathways: A Discrete Event Systems Approach. Master’s Thesis. University of Maryland, USA (1994)

  42. Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26.2, 9–24 (1996)

    Article  Google Scholar 

  43. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D., Shavlik, J. (eds.) Proceedings of the First International Conference on Intelligent Systems for Molecular Biology, vol. 1, pp. 328–336. AAAI Press, Menlo Park, CA, USA (1993)

  44. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. Proc. Pac. Symp. Biocomput. 6, 459–470 (2001)

    Google Scholar 

  45. Sackmann, A.: Modelling and Simulation of Signaltransduction Pathways of Saccharomyces cerevisiae Based on Petri Net Theory. Diploma Thesis. Ernst Moritz Arndt-University, Greifswald (2005) (in German)

  46. Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 7, 482 (2006)

    Article  Google Scholar 

  47. Sackmann, A., et al.: An analysis of the Petri net based model of the human body iron homeostasis process. Comput. Biol. Chem. 31, 1–10 (2007)

    Article  MATH  Google Scholar 

  48. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-VCH, Weinheim (1998)

    MATH  Google Scholar 

  49. Schuster, S., Dandekar, T., Fell, D.A.: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17.2, 53–60 (1999)

    Article  Google Scholar 

  50. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182 (1994)

    Article  Google Scholar 

  51. Schuster, S., Hilgetag, C., Schuster, R.: Determining elementary modes of functioning in biochemical reaction networks at steady state. In: Ghista, D.N. (eds.) Biomed. and Life Phys. Vieweg Wiesbaden, pp. 101–114 (1996)

  52. Schuster, S., et al.: Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18, 352–361 (2002)

  53. Srivastava, R., Peterson, M.S., Nentley, W.E.: Stochastic kinetic analysis of the Escherichia coli stress circuit using \(\sigma \)-32 targeted antisense. Biotechol. Bioeng. 231.1, 120–129 (2001)

    Article  Google Scholar 

  54. Steinhausen, D., Langer, K.: Cluster Analysis. An Introduction to Methods for Automatic Classification. de Gruyter, Berlin (1977) (in German)

  55. Voss, K., Heiner, M., Koch, I.: Steady state analysis of metabolic pathways using Petri nets. In Silico Biol. 3.3, 367–387 (2003)

    Google Scholar 

  56. Wang, L., Li, P.: Microfluidic DNA microarray analysis: a review. Anal. Chim. Acta 687.1, 12–27 (2011)

  57. Wick, L.M., Quadroni, M., Egli, T.: Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose limited growth conditions in continuous culture and vice versa. Environ. Microbiol. 3, 588–599 (2001)

    Article  Google Scholar 

  58. Windhager, L., Erhard, F., Zimmer, R.: Fuzzy Modeling. In: Koch, I., Reisig, W., Schreiber, F. (eds.) Modeling in Systems Biology: The Petri Net Approach. Comp. Biol., pp. 179–205. Springer, Berlin (2011)

Download references

Acknowledgments

In particular, I would like to thank the initiators of this special edition, Wolfgang Reisig and Jörg Desel, for their invitation to this contribution. My special thanks goes to Stefan Schuster for introducing me to the works of Reddy in 1997 and for many inspiring discussions. I also would like to thank Jörg Ackermann, Falk Schreiber, Björn Junker, Andrea Sackmann, Eva Grafahrend-Belau, Astrid Speer and Stefanie Grunwald for fruitful collaboration. Additionally, many thanks to Michael Rücker for the professional translation and careful reading of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Koch.

Additional information

Communicated by Dr. Wolfgang Reisig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, I. Petri nets in systems biology. Softw Syst Model 14, 703–710 (2015). https://doi.org/10.1007/s10270-014-0421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-014-0421-5

Keywords

Navigation