Skip to main content
Log in

Imagerie des métastases osseuses

Bone metastases imaging

  • Mise au Point / Update
  • Published:
Oncologie

Résumé

L’os représente le troisième site métastatique après le foie et le poumon. Les métastases osseuses (MO) se localisent préférentiellement dans les zones de moelle rouge. Sur le rachis, les métastases osseuses siègent essentiellement à l’étage lombaire et thoracique bas. Sur les os longs, elles siègent presque exclusivement dans les régions métaphysodiaphysaires. Les MO sont soit ostéolytiques, soit ostéoblastiques. Il existe de nombreuses atypies : les MO peuvent atteindre tout le squelette du fait de la répartition extensive de la moelle hématopoïétique chez l’enfant. Les MO distales surviennent habituellement lors d’une maladie métastatique, et le cancer du poumon est le plus souvent en cause avec une nette prédominance pour la main. Les MO localisées exclusivement à l’os cortical sont rares. Elles s’observent sur les os longs du membre inférieur, surtout le fémur. Un cancer du poumon est retrouvé dans 50 % des cas. Les MO soufflantes sont fréquentes dans les cancers de la thyroïde et du rein, dont elles sont souvent révélatrices. Enfin, les MO pseudosarcomateuses qui simulent un sarcome osseux du fait de la présence d’une réaction périostée agressive, spiculée, d’une volumineuse masse des parties molles s’observent surtout dans le cancer de la prostate. L’imagerie par résonance magnétique (IRM) et la TEP-scan sont actuellement les examens de référence pour la surveillance des MO permettant une étude morphologique et aussi quantitative. Dans certains cancers en particulier la prostate, la scintigraphie (SS) reste l’examen de référence. Le scanner sera demandé pour apprécier l’étendue de l’ostéolyse et le risque fracturaire pour une décision thérapeutique. Les radiographies seront prescrites centrées sur zone douloureuse.

Abstract

The bones are the third most common site for metastases, after the liver and lungs. Bone metastases (BM) are most commonly found in areas of red bone marrow. When located in the spine, bone metastases are mainly located in the lumbar and lower thoracic regions. In long bones, metastases are almost always found in the metaphyseal and diaphyseal regions. Bone metastases are either osteolytic or osteoblastic. There are numerous exceptions: bone metastases can effect the whole skeleton due to the extensive distribution of haematopoietic bonemarrow in children. Distal bone metastases commonly occur during cases of metastatic disease, and lung cancer is most often the cause, with a net predominance of bone metastases in the hand. Bone metastases found exclusively in the cortical bone are rare. They are observed in the long bones of the lower limbs, in particular in the femur. In 50% of cases, they are as the result of lung cancer. Blowout or expansile bone metastases are common in thyroid and kidney cancers, and are often how the diseases are spotted. Finally, pseudosarcomatous bone metastasis that stimulate bone sarcoma due to the presence of an aggressive, spiking, periosteal reaction forming a large mass of soft tissue, are usually observed in prostate cancer. MRI and PET-scans are currently the preferred investigations performed to monitor bone metastases, enabling both a morphological and quantitative assessment to be made. For certain cancers, in particular prostate cancer, scintigraphy remains the investigation of choice. A CT scan will be requested to determine the extent of osteolysis and the risk of fracture, so that decisions regarding treatments can be made. X-rays will also be prescribed, focusing on areas of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Hage WD, Aboulafia AJ, Aboulafia DM (2000) Incidence, location, and diagnostic evaluation of metastatic bone disease. Orthop Clin North Am 31: 515–28, vii

    Article  CAS  PubMed  Google Scholar 

  2. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80: 1588–94

    Article  CAS  PubMed  Google Scholar 

  3. Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80: 1546–56

    Article  CAS  PubMed  Google Scholar 

  4. Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88: 2892–98

    Article  CAS  PubMed  Google Scholar 

  5. Chirgwin JM, Mohammad KS, Guise TA (2004) Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact 4: 308–18

    CAS  PubMed  Google Scholar 

  6. Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 12: 549–83

    Article  CAS  PubMed  Google Scholar 

  7. Asdourian PL, Weidenbaum M, DeWald RL, et al. (1990) The pattern of vertebral involvement in metastatic vertebral breast cancer. Clin Orthop Relat Res 250: 164–70

    PubMed  Google Scholar 

  8. Braunstein EM, Kuhns LR (1983) Computed tomographic demonstration of spinal metastases. Spine 8: 912–5

    Article  CAS  PubMed  Google Scholar 

  9. Kricun ME (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 14: 10–9

    Article  CAS  PubMed  Google Scholar 

  10. Stines J, Conroy T, Bey P, Schmitt C (1992) L’imagerie dans les métastases osseuses. Feuill Radiol 32: 95–116

    Google Scholar 

  11. Traill Z, Richards MA, Moore NR (1995) Magnetic resonance imaging of metastatic bone disease. Clin Orthop Relat Res 312: 76–88

    PubMed  Google Scholar 

  12. Lodwick GS, Wilson AJ, Farrell C, et al. (1980) Determining growth rates of focal lesions of bone from radiographs. Radiology 134: 577–83

    Article  CAS  PubMed  Google Scholar 

  13. Lodwick GS, Wilson AJ, Farrell C, et al. (1980) Estimating rate of growth in bone lesions: observer performance and error. Radiology 134: 585–90

    Article  CAS  PubMed  Google Scholar 

  14. Paycha F, Richard B (2001) Exploration scintigraphique du squelette. Encyclopédie Médico-Chirurgicale. Éditions Scientifiques et Médicales, Elsevier SAS, Paris, 30-480-A-10

    Google Scholar 

  15. Galasko CS (1975) The pathological basis for skeletal scintigraphy. J Bone Joint Surg Br 57: 353–9

    CAS  PubMed  Google Scholar 

  16. Koizumi M, Yoshimoto M, Kasumi F, Ogata E (2001) What do breast cancer patients benefit from staging bone scintigraphy? Jpn J Clin Oncol 31: 263–9

    Article  CAS  PubMed  Google Scholar 

  17. Rosselli Del Turco M, Palli D, Cariddi A, et al. (1994) Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National Research Council Project on Breast Cancer follow-up. JAMA 271: 1593–7

    Article  CAS  PubMed  Google Scholar 

  18. Langsteger W, Balogova S, Huchet V, et al. (2011) Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 55: 448–57

    CAS  PubMed  Google Scholar 

  19. Yang HL, Liu T, Wang XM, et al. (2011) Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21: 2604–17

    Article  PubMed  Google Scholar 

  20. Ghanem N, Uhl M, Brink I, et al. (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55: 41–55

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt GP, Schoenberg SO, Schmid R, et al. (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17: 939–49

    Article  PubMed  Google Scholar 

  22. Seeger LL, Dungan DH, Eckardt JJ, et al. (1991) Nonspecific findings on MR imaging. The importance of correlative studies and clinical information. Clin Orthop Relat Res (270): 306–12

    PubMed  Google Scholar 

  23. Libson E, Bloom RA, Husband JE, Stoker DJ (1987) Metastatic tumours of bones of the hand and foot. A comparative review and report of 43 additional cases. Skeletal Radiol 16: 387–92

    Article  CAS  PubMed  Google Scholar 

  24. Abrahams TG (1995) Occult malignancy presenting as metastatic disease to the hand and wrist. Skeletal Radiol 24: 135–7

    Article  CAS  PubMed  Google Scholar 

  25. Hendrix RW, Rogers LF, Davis TM Jr (1991) Cortical bone metastases. Radiology 181: 409–13

    Article  CAS  PubMed  Google Scholar 

  26. Coerkamp EG, Kroon HM (1988) Cortical bone metastases. Radiology 169: 525–8

    Article  CAS  PubMed  Google Scholar 

  27. Miric A, Banks M, Allen D, et al. (1998) Cortical metastatic lesions of the appendicular skeleton from tumors of known primary origin. J Surg Oncol 67: 255–60

    Article  CAS  PubMed  Google Scholar 

  28. Greenspan A, Norman A (1988) Osteolytic cortical destruction: an unusual pattern of skeletal metastases. Skeletal Radiol 17: 402–6

    Article  CAS  PubMed  Google Scholar 

  29. Surov A, Hainz M, Holzhausen HJ, et al. (2010) Skeletal muscle metastases: primary tumours, prevalence, and radiological features. Eur Radiol 20: 649–58

    Article  PubMed  Google Scholar 

  30. Damron TA, Heiner J (2000) Distant soft tissue metastases: a series of 30 new patients and 91 cases from the literature. Ann Surg Oncol 7: 526–34

    Article  CAS  PubMed  Google Scholar 

  31. Lee BY, Choi JE, Park JM, et al. (2008) Various image findings of skeletal muscle metastases with clinical correlation. Skeletal Radiol 37: 923–8

    Article  PubMed  Google Scholar 

  32. Plaza JA, Perez-Montiel D, Mayerson J, et al. (2008) Metastases to soft tissue: a review of 118 cases over a 30-year period. Cancer 112: 193–203

    Article  PubMed  Google Scholar 

  33. Kuhlman JE, Fishman EK, Leichner PK, et al. (1986) Skeletal metastases from hepatoma: frequency, distribution, and radiographic features. Radiology 160: 175–8

    Article  CAS  PubMed  Google Scholar 

  34. Lang P, Fritz R, Vahlensieck M, et al. (1992) Residual and reconverted hematopoietic bone marrow in the distal femur. Spin-echo and opposed-phase gradient-echo MRT. Rofo 156: 89–95

    Article  CAS  PubMed  Google Scholar 

  35. Hayward JL, Carbone PP, Heusen JC, et al. (1977) Assessment of response to therapy in advanced breast cancer. Br J Cancer 35: 292–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205–16

    Article  CAS  PubMed  Google Scholar 

  37. Hamaoka T, Madewell JE, Podoloff DA, et al. (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22: 2942–53

    Article  PubMed  Google Scholar 

  38. Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45: 228–47

    Article  CAS  PubMed  Google Scholar 

  39. Vassiliou V, Andreopoulos D, Frangos S, et al. (2011) Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol (R Coll Radiol) 23: 632–45

    Article  CAS  Google Scholar 

  40. Bäuerle T, Semmler W (2009) Imaging response to systemic therapy for bone metastases. Eur Radiol 19: 2495–507

    Article  PubMed  Google Scholar 

  41. Lecouvet FE, Larbi A, Pasoglou V, et al. (2013) MRI for response assessment in metastatic bone disease. Eur Radiol 23: 1986–97

    Article  CAS  PubMed  Google Scholar 

  42. Coleman RE, Mashiter G, Whitaker KB, et al. (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29: 1354–9

    CAS  PubMed  Google Scholar 

  43. Janicek MJ, Hayes DF, Kaplan WD (1994) Healing flare in skeletal metastases from breast cancer. Radiology 192: 201–4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Parlier-Cuau.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parlier-Cuau, C., Bousson, V., Touraine, S. et al. Imagerie des métastases osseuses. Oncologie 17, 75–89 (2015). https://doi.org/10.1007/s10269-015-2500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-015-2500-9

Mots clés

Keywords

Navigation