Skip to main content
Log in

The mtDNA rps3 locus has been invaded by a group I intron in some species of Grosmannia

  • Note
  • Published:
Mycoscience

Abstract

The mitochondrial rps3 gene in some filamentous ascomycetes fungi is encoded within an rnl group I intron. In Grosmannia piceiperda the N-terminal segment of the intron-encoded rps3 gene has been invaded by an IC2-type group I intron. This intron disrupts the recipient rps3 and fragments this gene into two open reading frames (ORFs). The IC2 group I intron encodes a putative double-motif LAGLIDADG ORF, which is fused in-frame to the upstream rps3 exon sequence. The presence of the LAGLIDADG amino acid motif is indicative of an enzyme that has endonuclease and/or maturase activity and thus the intron encoded protein could be involved in promoting splicing and mobility. Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed that this intron is spliced in vivo and as a result this could allow for the expression of a functional ribosomal Rps3 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Belfort M, Derbyshire V, Cousineau B, Lambowitz A (2002) Mobile introns: pathways and proteins. In: Craig N, Craigie R, Gellert M, Lambowitz A (eds) Mobile DNA II. ASM Press, Washington, DC, pp 761–783

    Google Scholar 

  • Bell JA, Monteiro-Vitorello CB, Hausner G, Fulbright DW, Bertrand H (1996) Physical and genetic map of the mitochondrial genome of Cryphonectria parasitica Ep155. Curr Genet 30:34–43

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, RajBhandary UL (1982) Intron within the large rRNA gene of N. crassa mitochondria: a long open reading frame and a consensus sequence possibly important in splicing. Cell 31:509–520

    Article  PubMed  CAS  Google Scholar 

  • Caprara MG, Waring RB (2005) Group I introns and their maturases: uninvited, but welcome guests. Nucleic Acids Mol Biol 16:103–119

    Article  CAS  Google Scholar 

  • Cech TR, Damberger SH, Gutell ER (1994) Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol 1:273–280

    Article  PubMed  CAS  Google Scholar 

  • Grivell LA (1995) Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit Rev Biochem Mol Biol 30:121–164

    Article  PubMed  CAS  Google Scholar 

  • Hausner G (2012) Introns, mobile elements and plasmids. In: Bullerwell CE (ed) Organelle genetics: evolution of organelle genomes and gene expression. Springer, Berlin, pp 329–358

    Google Scholar 

  • Johansen JS, Haugen P (2001) A new nomenclature of group I introns in ribosomal DNA. RNA 7:935–936

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Laforest MJ, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23:119–125

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modeling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Article  PubMed  CAS  Google Scholar 

  • Mota EM, Collins RA (1988) Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 332:654–656

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMB News 4:14

    Google Scholar 

  • Sellem CH, Belcour L (1997) Intron open reading frames as mobile elements and evolution of a group I intron. Mol Biol Evol 14:518–526

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman J, Majer A, Friedrich N, Edgell D, Hausner G (2009a) Genes-within-genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within an rnl group I intron of Ophiostoma and related taxa. Mol Biol Evol 26:2299–2315

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman J, Majer A, Iranpour M, Hausner G (2009b) Molecular evolution of the mtDNA encoded rps3 gene among filamentous ascomycetes fungi with an emphasis on the ophiostomatoid fungi. J Mol Evol 69:372–385

    Article  PubMed  CAS  Google Scholar 

  • Stoddard BL (2006) Homing endonuclease structure and function. Q Rev Biophys 1:49–95

    Article  Google Scholar 

  • Takeuchi R, Lambert AR, Mak AN, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci USA 108:13077–13082

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to G.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hausner.

About this article

Cite this article

Rudski, S.M., Hausner, G. The mtDNA rps3 locus has been invaded by a group I intron in some species of Grosmannia . Mycoscience 53, 471–475 (2012). https://doi.org/10.1007/s10267-012-0183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-012-0183-2

Keywords

Navigation