Skip to main content

Advertisement

Log in

Effects of surface reaction-type pre-reacted glass ionomer on oral biofilm formation of Streptococcus gordonii

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Streptococcus gordonii, a bacterium involved in the initial colonization of tooth surfaces, contributes to dental biofilm formation and is an important cause of infective endocarditis. This study aimed to investigate the influence of surface reaction-type pre-reacted glass ionomer (S-PRG) filler on oral bacterial growth and aggregation of S. gordonii. The effect of various concentrations of S-PRG eluate on the growth and the biofilm formation of S. gordonii and other oral microorganisms (Streptococcus mutans, Streptococcus oralis, Lactobacillus acidophilus, and Candida albicans) was assessed. In addition, the effect of S-PRG eluate on coaggregation of S. gordonii with both S. oralis and Fusobacterium nucleatum was assessed. The effect of S-PRG eluate treatment on autoaggregation of S. gordonii was also evaluated. Our results indicate that S-PRG eluate treatment reduced both for the growth and for biofilm of all organisms in a dose-dependent manner. Coaggregation of S. gordonii with both S. oralis and F. nucleatum was inhibited by S-PRG eluate, whereas autoaggregation of S. gordonii increased at certain concentrations of S-PRG eluate. These results indicate that the S-PRG filler possesses antimicrobial activity that is mediated by inhibiting growth and biofilm of oral microorganisms, and by suppressing coaggregation of S. gordonii. In addition, these findings indicate that coaggregation of S. gordonii with other bacteria is inhibited by increased autoaggregation of S. gordonii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibbons RJ. Adherent interactions which may affect microbial ecology in the mouth. J Dent Res. 1984;63:378–85.

    Article  PubMed  Google Scholar 

  2. Whittaker CJ, Clemans DL, Kolenbrander PE. Insertional inactivation of an intrageneric coaggregation-relevant adhesin locus from Streptococcus gordonii DL1 (Challis). Infect Immun. 1996;64:4137–42.

    PubMed  PubMed Central  Google Scholar 

  3. Cisar JO, Sandberg AL, Abeygunawardana C, Reddy GP, Bush CA. Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. Glycobiology. 1995;5:655–62.

    Article  PubMed  Google Scholar 

  4. Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol. 2003;185:3400–9.

    Article  PubMed  Google Scholar 

  5. Lamont RJ, Hersey SG, Rosan B. Characterization of the adherence of Porphyromonas gingivalis to oral streptococci. Oral Microbiol Immunol. 1992;7:193–7.

    Article  PubMed  Google Scholar 

  6. Park Y, Simionato MR, Sekiya K, Murakami Y, James D, Chen W, Hackett M, Yoshimura F, Demuth DR, Lamont RJ. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect Immun. 2005;73:3983–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Love RM, McMillan MD, Park Y, Jenkinson HF. Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin. Infect Immun. 2000;68:1359–65.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kolenbrander PE. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol. 1988;42:627–56.

    Article  PubMed  Google Scholar 

  9. Tanzer JM, Baranowski LK, Rogers JD, Haase EM, Scannapieco FA. Oral colonization and cariogenicity of Streptococcus gordonii in specific pathogen-free TAN: SPFOM (OM) BR rats consuming starch or sucrose diets. Arch Oral Biol. 2001;46:323–33.

    Article  PubMed  Google Scholar 

  10. Baddour LM. Virulence factors among Gram-positive bacteria in experimental endocarditis. Infect Immun. 1994;62:2143–8.

    PubMed  PubMed Central  Google Scholar 

  11. Stinson MW, Alder S, Kumar S. Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun. 2003;71:2365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takahashi Y, Takashima E, Shimazu K, Yagishita H, Aoba T, Konishi K. Contribution of sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by Streptococcus gordonii DL1. Infect Immun. 2006;74:740–3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pupo YM, Farago PV, Nadal JM, Simao LC, Esmerino LA, Gomes OM, Gomes JC. Effect of a novel quaternary ammonium methacrylate polymer (QAMP) on adhesion and antibacterial properties of dental adhesives. Int J Mol Sci. 2014;15:8998–9015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27:762–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cui C, Zhou XN, Chen WM. Self-etching adhesives: possible new pulp capping agents to vital pulp therapy. Front Med. 2011;5:77–9.

    Article  PubMed  Google Scholar 

  16. Saku S, Kotake H, Scougall-Vilchis RJ, Ohashi S, Hotta M, Horiuchi S, Hamada K, Asaoka K, Tanaka E, Yamamoto K. Antibacterial activity of composite resin with glass-ionomer filler particles. Dent Mater J. 2010;29:193–8.

    Article  PubMed  Google Scholar 

  17. Shimazu K, Ogata K, Karibe H. Evaluation of the ion-releasing and recharging abilities of a resin-based fissure sealant containing S-PRG filler. Dent Mater J. 2011;30:923–7.

    Article  PubMed  Google Scholar 

  18. Han L, Cv E, Li M, Niwano K, Ab N, Okamoto A, Honda N, Iwaku M. Effect of fluoride mouth rinse on fluoride releasing and recharging from aesthetic dental materials. Dent Mater J. 2002;21:285–95.

    Article  PubMed  Google Scholar 

  19. Itota T, Carrick TE, Yoshiyama M, McCabe JF. Fluoride release and recharge in giomer, compomer and resin composite. Dent Mater. 2004;20:789–95.

    Article  PubMed  Google Scholar 

  20. Kamijo K, Mukai Y, Tominaga T, Iwaya I, Fujino F, Hirata Y, Teranaka T. Fluoride release and recharge characteristics of denture base resins containing surface pre-reacted glass-ionomer filler. Dent Mater J. 2009;28:227–33.

    Article  PubMed  Google Scholar 

  21. Han L, Okamoto A, Fukushima M, Okiji T. Evaluation of a new fluoride-releasing one-step adhesive. Dent Mater J. 2006;25:509–15.

    Article  PubMed  Google Scholar 

  22. Itota T, Carrick TE, Rusby S, Al-Naimi OT, Yoshiyama M, McCabe JF. Determination of fluoride ions released from resin-based dental materials using ion-selective electrode and ion chromatograph. J Dent. 2004;32:117–22.

    Article  PubMed  Google Scholar 

  23. Mukai Y, Kamijo K, Fujino F, Hirata Y, Teranaka T, ten Cate JM. Effect of denture base-resin with prereacted glass-ionomer filler on dentin demineralization. Eur J Oral Sci. 2009;117:750–4.

    Article  PubMed  Google Scholar 

  24. Mukai Y, Tomiyama K, Shiiya T, Kamijo K, Fujino F, Teranaka T. Formation of inhibition layers with a newly developed fluoride-releasing all-in-one adhesive. Dent Mater J. 2005;24:172–7.

    Article  PubMed  Google Scholar 

  25. Shimazu K, Ogata K, Karibe H. Caries-preventive effect of fissure sealant containing surface reaction-type pre-reacted glass ionomer filler and bonded by self-etching primer. J Clin Pediatr Dent. 2012;36:343–7.

    Article  PubMed  Google Scholar 

  26. Fujimoto Y, Iwasa M, Murayama R, Miyazaki M, Nagafuji A, Nakatsuka T. Detection of ions released from S-PRG fillers and their modulation effect. Dent Mater J. 2010;29:392–7.

    Article  PubMed  Google Scholar 

  27. Yoneda M, Suzuki N, Masuo Y, Fujimoto A, Iha K, Yamada K, Iwamoto T, Hirofuji T. Effect of S-PRG eluate on biofilm formation and enzyme activity of oral bacteria. Int J Dent. 2012;2012:1–6.

    Article  Google Scholar 

  28. Suzuki N, Yoneda M, Haruna K, Masuo Y, Nishihara T, Nakanishi K, Yamada K, Fujimoto A, Hirofuji T. Effects of S-PRG eluate on oral biofilm and oral malodor. Arch Oral Biol. 2014;59:407–13.

    Article  PubMed  Google Scholar 

  29. Liljemark WF, Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med. 1996;7:180–98.

    Article  PubMed  Google Scholar 

  30. Tahmourespour A, Kermanshahi RK. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral streptococci. Bosn J Basic Med Sci. 2011;11:37–40.

    PubMed  PubMed Central  Google Scholar 

  31. Corcuera MT, Gomez-Lus ML, Gomez-Aguado F, Maestre JR, Ramos Mdel C, Alonso MJ, Prieto J. Morphological plasticity of Streptococcus oralis isolates for biofilm production, invasiveness, and architectural patterns. Arch Oral Biol. 2013;58:1584–93.

    Article  PubMed  Google Scholar 

  32. Douglas CW, Heath J, Hampton KK, Preston FE. Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol. 1993;39:179–82.

    Article  PubMed  Google Scholar 

  33. Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schäfer W, Hube B. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun. 2002;70:3689–700.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90:939–49.

    Article  PubMed  Google Scholar 

  35. Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol. 2000;182:1374–82.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cisar JO, Kolenbrander PE, McIntire FC. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979;24:742–52.

    PubMed  PubMed Central  Google Scholar 

  37. Kolenbrander PE, Andersen RN, Holdeman LV. Coaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions. Infect Immun. 1985;48:741–6.

    PubMed  PubMed Central  Google Scholar 

  38. Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol. 2003;185:3400–9.

    Article  PubMed  Google Scholar 

  39. Takemoto T, Hino T, Yoshida M, Nakanishi K, Shirakawa M, Okamoto H. Characteristics of multimodal co-aggregation between Fusobacterium nucleatum and streptococci. J Periodontal Res. 1995;30:252–7.

    Article  PubMed  Google Scholar 

  40. Kinder SA, Holt SC. Characterization of coaggregation between Bacteroides gingivalis T22 and Fusobacterium nucleatum T18. Infect Immun. 1989;57:3425–33.

    PubMed  PubMed Central  Google Scholar 

  41. Han L, Takenaka S, Okiji T. Evaluation of selected properties of a prototype S-PRG filler containing root canal sealer. Jpn J Conserv Dent. 2007;50:713–20.

    Google Scholar 

  42. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8:471–80.

    Article  PubMed  Google Scholar 

  43. Egland PG, Du LD, Kolenbrander PE. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Infect Immun. 2001;69:7512–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jakubovics NS, Kerrigan SW, Nobbs AH, Stromberg N, van Dolleweerd CJ, Cox DM, Kelly CG, Jenkinson HF. Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun. 2005;73:6629–38.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Takahashi Y, Konishi K, Cisar JO, Yoshikawa M. Identification and characterization of hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1. Infect Immun. 2002;70:1209–18.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nobbs AH, Zhang Y, Khammanivong A, Herzberg MC. Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol. 2007;189:3106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kinder SA, Holt SC. Coaggregation between bacterial species. Methods Enzymol. 1994;236:254–70.

    Article  PubMed  Google Scholar 

  48. Guo L, Wu T, Hu W, He X, Sharma S, Webster P, Gimzewski JK, Zhou X, Lux R, Shi W. Phenotypic characterization of the foldase homologue PrsA in Streptococcus mutans. Mol Oral Microbiol. 2013;28:154–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research No. 26861845 from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisaki Shimazu.

Ethics declarations

Conflict of interest

The S-PRG filler was provided by Shofu Inc. (Kyoto, Japan); however, the sponsor of the study had no role in the study design, conduct of the study, data collection, data interpretation, or preparation of the report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimazu, K., Oguchi, R., Takahashi, Y. et al. Effects of surface reaction-type pre-reacted glass ionomer on oral biofilm formation of Streptococcus gordonii . Odontology 104, 310–317 (2016). https://doi.org/10.1007/s10266-015-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-015-0217-2

Keywords

Navigation