Skip to main content
Log in

Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Fumonisin B1 (FB1), an inducer of cell death, disrupts sphingolipid metabolism; large accumulations of de novo synthesized free long-chain bases (LCBs) are observed. However, it remains unclear whether tolerance to FB1 toxicity in plants is connected with preventing the accumulation of free LCBs through their phosphorylation. Here a workflow for the extraction, detection and quantification of LCB phosphates (LCBPs) in Arabidopsis thaliana was developed. We studied the effect of expression of genes for three enzymes involved in the synthesis and degradation of LCBPs, LCB kinase (LCBK1), LCBP phosphatase (SPP1) and lyase (DPL1) on FB1-induced cell death. As expected, large accumulations of saturated free LCBs, dihydrosphingosine and phytosphingosine, were observed in the FB1-treated leaves. On the other hand, a high level of sphingenine phosphate was found in the FB1-treated leaves even though free sphingenine was found in low amounts in these leaves. In comparison of WT and spp1 plants, the LCBP/LCB ratio is likely to be correlated with the degree of FB1-induced cell death determined by trypan blue staining. The FB1-treated leaves in dpl1 plants showed severe cell death and the elevation of free LCBs and LCBPs. LCBK1-OX and -KD plants showed resistance and sensitivity to FB1, respectively, whereas free LCB and LCBP levels in FB1-treated LCBK1-OX and -KD plants were moderately different to those in FB1-treated WT plants. Overall, the findings described here suggest that LCBP/LCB homeostasis is an important topic that participates in the tolerance of plant cells to FB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMV35S:

Cauliflower mosaic virus 35S

Cer:

Ceramide

DPL:

LCBP lyase

d17:1:

C17-E-4-sphingenine

d17:1-P:

C17-E-4-sphingenine-1-phosphate

d18:0:

Sphinganine (dihydrosphingosine)

d18:0-P:

Sphinganine (dihydrosphingosine)-1-phosphate

d18:1(4E) :

E-4-sphingenine (sphingosine)

d18:1(4E)-P:

E-4-sphingenine (sphingosine)-1-phosphate

d18:1(8Z):

Z-8-sphingenine

d18:1(8Z)-P:

Z-8-sphingenine-1-phosphate

d18:1(8E):

E-8-sphingenine

d18:1(8E)-P:

E-8-sphingenine-1-phosphate

ESI:

Electrospray ionization

FB1 :

Fumonisin B1

GlcCer:

Glucosylceramide

GIPC:

Glycosyl inositolphosphoceramide

HPLC:

High-performance liquid chromatography

HR:

Hypersensitive response

LC:

Liquid chromatography

LCB:

Long-chain base

LCBP:

Long-chain base 1-phosphate

LCBK:

LCB kinase

MRM:

Multiple reaction monitoring

MS/MS:

Tandem mass spectrometry

NBD-F:

4-fluoro-7-nitrobenzofurazan

ROI:

Reactive oxygen intermediate

SPP:

LCBP phosphatase

t18:0:

4-hydroxy-sphinganine (phytosphingosine)

t18:0-P:

4-hydroxy-sphinganine (phytosphingosine)-1-phosphate

t18:1(8Z):

4-hydroxy-Z-8-sphingenine

t18:1(8Z)-P:

4-hydroxy-Z-8-sphingenine-1-phosphate

t18:1(8E):

4-hydroxy-E-8-sphingenine

t18:1(8E)-P:

4-hydroxy-E-8-sphingenine-1-phosphate

WT:

Wild type

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abnet CC, Borkowf CB, Qiao YL, Albert PS, Wang E, Merrill AH Jr, Mark SD, Dong ZW, Taylor PR, Dawsey SM (2001) Sphingolipids as biomarkers of fumonisin exposure and risk of esophageal squamous cell carcinoma in china. Cancer Causes Control 12:821–828

    Article  CAS  PubMed  Google Scholar 

  • Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK, McCabe PF, Leaver CJ (2011) Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochem Biophys Res Commun 410:574–580

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:1823–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdyshev EV, Gorshkova IA, Garcia JG, Natarajan V, Hubbard WC (2005) Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. Anal Biochem 339:129–136

    Article  CAS  PubMed  Google Scholar 

  • Brandwagt BF, Kneppers TJ, Nijkamp HJ, Hille J (2002) Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici in Nicotiana umbratica plants. Mol Plant Microbe Interact 15:35–42

    Article  CAS  PubMed  Google Scholar 

  • Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell 23:1061–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Cahoon EB, Saucedo-Garcı´a M, Plasencia J, Gavilanes-Ruı´z M (2009) Plant sphingolipids: structure, synthesis, function. In: Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer Science, New York, pp 77–115

    Chapter  Google Scholar 

  • Chen M, Markham JE, Cahoon EB (2012) Sphingolipid ∆8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J 69:769–781

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE, Busman M (2006) Mycotoxins in developing countries: a case study of maize in Nepal. Mycotoxin Res 22:92–95

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I (2012) Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytol 194:181–191

    Article  CAS  PubMed  Google Scholar 

  • Higuchi K, Hara J, Okamoto R, Kawashima M, Imokawa G (2000) The skin of atopic dermatitis patients contains a novel enzyme, glucosylceramide sphingomyelin deacylase, which cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. Biochem J 350:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai H, Hattori H, Watanabe M (2012) An improved method for analysis of glucosylceramide species having cis-8 and trans-8 isomers of sphingoid bases by LC-MS/MS. Lipids 47:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Imokawa G (2009) A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. J Dermatol Sci 55:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Imai H, Kawai-Yamada M (2014) Development of an LC-MS/MS method for the analysis of free sphingoid bases using 4-fluoro-7-nitrobenzofurazan (NBD-F). Lipids 49:295–304

    Article  CAS  PubMed  Google Scholar 

  • Kimberlin AN, Majumder S, Han G, Chen M, Cahoon RE, Stone JM, Dunn TM, Cahoon EB (2013) Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, areessential, and affect mycotoxin sensitivity. Plant Cell 25:4627–4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachaud C, Da Silva D, Amelot N, Béziat C, Brière C, Cotelle V, Graziana A, Grat S, Mazars C, Thuleau P (2011) Dihydrosphingosine-induced programmed cell death in tobacco BY-2 cells is independent of H2O2 production. Mol Plant 4:310–318

    Article  CAS  PubMed  Google Scholar 

  • Lachaud C, Prigent E, Thuleau P, Grat S, Da Silva D, Brière C, Mazars C, Cotelle V (2013) 14-3-3-regulated Ca(2+)-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death Differ 20:209–217

    Article  CAS  PubMed  Google Scholar 

  • Li M, Markham JE, Wang X (2014) Overexpression of patatin-related phospholipase AIIIβ altered the content and composition of sphingolipids in Arabidopsis. Front Plant Sci 5:553

    PubMed  PubMed Central  Google Scholar 

  • Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE, Cahoon EB (2014) Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. Phytochemistry 115:121–129

    Article  Google Scholar 

  • Luttgeharm KD, Chen M, Mehra A, Cahoon RE, Markham JE, Cahoon EB (2015a) Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance. Plant Physiol 169:1108–1117

    Article  PubMed  PubMed Central  Google Scholar 

  • Luttgeharm KD, Cahoon EB, Markham JE (2015b) Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochem J 473:593–603

    Article  PubMed  Google Scholar 

  • Magnin-Robert M, Le Bourse D, Markham J, Dorey S, Clément C, Baillieul F, Dhondt-Cordelier S (2015) Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiol 169:2255–2274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markham JE (2013) Detection and quantification of plant sphingolipids by LC-MS. Methods Mol Biol 1009:93–101

    Article  CAS  PubMed  Google Scholar 

  • Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694

    Article  CAS  PubMed  Google Scholar 

  • Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui JC, Satiat-Jeunemaître B, Faure JD (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23:2362–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill AH, Caligan TB, Wang E, Peters K, Ou J (2000) Analysis of sphingoid bases and sphingoid base 1-phosphates by high-performance liquid chromatography. Methods Enzymol 312:3–9

    Article  CAS  PubMed  Google Scholar 

  • Michaelson LV, Zäuner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA (2009) Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol 149:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami I, Mitsutake S, Kobayashi N, Matsuda J, Suzuki A, Shigyo T, Igarashi Y (2013) Improved high-fat diet-induced glucose intolerance by an oral administration of phytosphingosine. Biosci Biotechnol Biochem 77:194–197

    Article  PubMed  Google Scholar 

  • Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M (2014) Arabidopsis bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta 240:77–89

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa N, Kato M, Takahashi Y, Shimazaki K, Tamura K, Tokuji Y, Kihara A, Imai H (2012) Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. J Plant Res 125:439–449

    Article  CAS  PubMed  Google Scholar 

  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599

    Article  CAS  PubMed  Google Scholar 

  • Nishiura H, Imai H (2005) Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base kinase gene in plants. Plant Cell Physiol 46:375–380

    Article  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas JJ, Markham JE, Martínez-Force E, Garcés R (2011) Characterization of sphingolipids from sunflower seeds with altered fatty acid composition. J Agric Food Chem 59:12486–12492

    Article  CAS  PubMed  Google Scholar 

  • Saucedo-García M, Guevara-García A, González-Solís A, Cruz-García F, Vázquez-Santana S, Markham JE, Lozano-Rosas MG, Dietrich CR, Ramos-Vega M, Cahoon EB, Gavilanes-Ruíz M (2011) MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytol 191:943–957

    Article  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Shimada TL, Shimada T, Hara-Nishimura I (2010) A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J 61:519–528

    Article  CAS  PubMed  Google Scholar 

  • Shirakura Y, Kikuchi K, Matsumura K, Mukai K, Mitsutake S, Igarashi Y (2012) 4,8-Sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin. Lipids Health Dis 11:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EL, McKibbin JM, Karlsson KA, Pascher I, Samuelsson BE (1975) Characterization by mass spectrometry of blood group A active glycolipids from human and dog small intestins. BioChemistry 14:2120–2124

    Article  CAS  PubMed  Google Scholar 

  • Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–572

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2003) Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31:1216–1219

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, Van Brocklyn JR, Wang F (1998) Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 845:11–18

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Heard JE, Asai T, Ausubel FM (2000) Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12:1811–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellier F, Maia-Grondard A, Schmitz-Afonso I, Faure JD (2014) Comparative plant sphingolipidomic reveals specific lipids in seeds and oil. Phytochemistry 103:50–58

    Article  CAS  PubMed  Google Scholar 

  • Thuleau P, Aldon D, Cotelle V, Brière C, Ranty B, Galaud JP, Mazars C (2013) Relationships between calcium and sphingolipid-dependent signalling pathways during the early steps of plant-pathogen interactions. Biochim Biophys Acta 1833:1590–1594

    Article  CAS  PubMed  Google Scholar 

  • Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski JG, Chen M, Cahoon EB, Dunn TM (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282:28195–28206

    Article  CAS  PubMed  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277:35642–35649

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Qin X, Tao S, Jiang X, Liang YK, Zhang S (2014) Long-chain base phosphates modulate pollen tube growth via channel-mediated influx of calcium. Plant J 79:507–516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Ikuko Nishimura (Konan University) for helpful advice on cell death data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Imai.

Ethics declarations

Sources of funding

Parts of this work were supported by Special Ordinary Expense Subsidies for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This research was also supported in part by the Strategic Research Foundation Grant-aided Project for Private Universities from MEXT of Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanagawa, D., Ishikawa, T. & Imai, H. Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana . J Plant Res 130, 571–585 (2017). https://doi.org/10.1007/s10265-017-0923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0923-7

Keywords

Navigation