Skip to main content

Advertisement

Log in

miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Rhizosphere acidification is a general response to Pi deficiency, especially in dicotyledonous plants. However, the signaling pathway underlying this process is still unclear. Here, we demonstrate that miR156 is induced in the shoots and roots of wild type Arabidopsis plants during Pi starvation. The rhizosphere acidification capacity was increased in 35S:MIR156 (miR156 overexpression) plants, but was completely inhibited in 35S:MIM156 (target mimicry) plants. Both 35S:MIR156 and 35S:MIM156 plants showed altered proton efflux and H+-ATPase activity. In addition, significant up-regulation of H+-ATPase activity in 35S:MIR156 roots coupled with increased citric acid and malic acid exudates was observed. qRT-PCR results showed that most H+-ATPase and PPCK gene transcript levels were decreased in 35S:MIM156 plants, which may account for the decreased H+-ATPase activity in 35S:MIM156 plants. MiR156 also affect the root architecture system. Collectively, our results suggest that miR156 regulates the process of rhizosphere acidification in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol 18:115–118

    Article  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bergonzi S, Albani MC, Loren Ver, van Themaat E, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G (2013) Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094–1097

    Article  PubMed  CAS  Google Scholar 

  • Birkenbihl RP, Jach G, Saedler H, Huijser P (2005) Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol 352:585–596

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Hu Y, Sun S, Zhu Y, Ma G, Xu G (2009) Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. J Exp Bot 60:557–565

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Tang X, Vance CP, White PJ, Zhang F, Shen J (2014) Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot 65:2995–3003

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant cell 18:412–421

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117

    Article  PubMed  CAS  Google Scholar 

  • Dinkelaker B (1990) Genotypische Unterschiede in der Phosphateffizienz von Kichererbse (Cicer arietinum L.). Ph.D. Thesis, Universität Hohenheim, Stuttgart

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hinsinger P, Gilkes RJ (1997) Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate. Geoderma 75:231–249

    Article  Google Scholar 

  • Hoffland E, Findenegg G, Nelemans J (1989) Solubilization of rock phosphate by rape. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC, Chen YR, Chen JW, Lin WY, Chen PM, Liu TY, Chen YS, Sun CM, Chiou TJ (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant cell 25:4044–4060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11:121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Larsson C, Widell S, Kjellbom P (1987) Preparation of high-purity plasma-membranes. Meth Enzymol 148:558–568

    Article  CAS  Google Scholar 

  • Lei KJ, Xie JY, Zhu YY, Song CP, An GY (2015) Screening and analysis of rhizosphere acidification deficiency mutants in Arabidopsis thaliana under low phosphorus. Soil Sci Plant Nutr 61:1–8

    Article  CAS  Google Scholar 

  • Li M, Shinano T, Tadano T (1997) Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci Plant Nutr 43:237–245

    Article  CAS  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Perin C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Huang TK, Chiou TJ (2013) Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant cell 25:4061–4074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu TY, Lin WY, Huang TK, Chiou TJ (2014) MicroRNA-mediated surveillance of phosphate transporters on the move. Trends Plant Sci 19:647–655

    Article  PubMed  CAS  Google Scholar 

  • Moseyko N, Feldman LJ (2001) Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–563

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Penaloza E, Munoz G, Salvo-Garrido H, Silva H, Corcuera LJ (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56:145–153

    PubMed  CAS  Google Scholar 

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate aquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Chen J, Wang Z, Yang C, Sasaki T, Yamamoto Y, Matsumoto H, Yan X (2006) Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot 57:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Baurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009) Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ 32:465–475

    Article  PubMed  CAS  Google Scholar 

  • Usami T, Horiguchi G, Yano S, Tsukaya H (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136:955–964

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J, Shou H (2012) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196:139–148

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P (2010) miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yan F, Zhu Y, Muller C, Zorb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+- pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Schmuke JJ, Flagg LM, Roberts JK, Allen EM, Ivashuta S, Gilbertson LA, Armstrong TA, Christian AT (2009) A novel real-time polymerase chain reaction method for high throughput quantification of small regulatory RNAs. Plant Biotechnol J 7:621–630

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Xu M, Koo Y, He J, Poethig RS (2013) Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2:e00260

  • Zhang WH, Ryan PR, Tyerman SD (2004) Citrate-permeable channels in the plasma membrane of cluster roots from white lupin. Plant Physiol 136:3771–3783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, Feng ZY, Zozomova-Lihova J, Wang JW (2013) Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Yan F, Zorb C, Schubert S (2005) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Plant Cell Physiol 46:892–901

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Jiawei Wang for providing the 35S:MIR156 and 35S:MIM156 seeds. We also thank Dr. Shuping Xing for providing the PromiR156a:GUS and PromiR156d:GUS seeds. This work was supported by the National Natural Science Foundation of China (31371426, 31570263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Yong An.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 389 kb)

Supplementary material 2 (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, K.J., Lin, Y.M. & An, G.Y. miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis . J Plant Res 129, 275–284 (2016). https://doi.org/10.1007/s10265-015-0778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0778-8

Keywords

Navigation