Skip to main content

Advertisement

Log in

Cassava root membrane proteome reveals activities during storage root maturation

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araújo WL, Tohge T, Osorio S, Lohse M, Balbo I, Krahnert I et al (2012) Antisense inhibition of the 2-Oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant respiration and during leaf senescence and fruit maturation. Plant Cell 24:2328–2351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asai N, Matsuyama T, Tamaoki M, Nakajima N, Kubo A, Aono M et al (2004) Compensation for lack of a cytosolic ascorbate peroxidase in an Arabidopsis mutant by activation of multiple antioxidative systems. Plant Sci 66:1547–1554

    Article  CAS  Google Scholar 

  • Bachem CW, Oomen RJF, Kuyt S, Horvath BM, Claassens MM, Vreugdenhil D et al (2000) Antisense suppression of a potato alpha-SNAP homologue leads to alterations in cellular development and assimilate distribution. Plant Mol Biol 43:473–482

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, Vensel WH, DuPont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot 57:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Barakatea A, Stephensa J, Goldiea A, Hunter WN, Marshall D, Hancock RD et al (2011) Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco. Plant Cell 23:4492–4506

    Article  CAS  Google Scholar 

  • Bartling D, Weilek EW (1992) Leucine aminopeptidase from Arabidopsis thaliana molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. Eur J Biochem 205:425–431

    Article  PubMed  CAS  Google Scholar 

  • Camp PJ, Randall DD (1985) Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex. Plant Physiol 77:571–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chanwiwathana Y, Tangphatsornruang S, Wichadakul D, Akashi K, Leelapon O, Suksang panomrung M (2007) Genome wide analysis of cassava transcriptome: construction of a large cassava EST database. Paper presented at the 1st International trade exhibition and conference for biotechnology, The Queen Sirikit National Convention Center, Bangkok, Thailand

  • Chabregas SM, Luche DD, Farias LP, Ribeiro AF, Sluys MA, Menck CFM et al (2001) Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts. Plant Mol Biol 46:639–650

    Article  PubMed  CAS  Google Scholar 

  • Chao WS, Gu YQ, Pautot V, Bray EA, Walling LL (1999) Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol 120:979–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Chi Y, Taylor NL, Lambers H, Finnegan PM (2010) Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis. Plant Physiol 153:1385–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevalier F (2010) Highlights on the capacities of “Gel-based”proteomics. Proteom Sci 8:23

    Article  CAS  Google Scholar 

  • Chibata I, Tosa T, Sato T, Mori T (1976) Production of l-amino acids by aminoacylase adsorbed on DEAE-sephadex. Methods Enzymol 44:746–759

    Article  PubMed  CAS  Google Scholar 

  • Drea SC, Mould RM, Hibberd JM, Gray JC, Kavanagh TA (2001) Tissue-specific and developmental-specific expression of an Arabidopsis thaliana gene encoding the lipoamide dehydrogenase component of the plastid pyruvate dehydrogenase complex. Plant Mol Biol 46:705–715

    Article  PubMed  CAS  Google Scholar 

  • Duncan O, Murcha MW, Whelan J (2013) Unique components of the plant mitochondrial protein import apparatus. Biochim Biophy Acta 1833:304–313

    Article  CAS  Google Scholar 

  • Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figueroa P, León G, Elorza A, Holuigue L, Jordana X (2001) Three different genes encode the iron-sulfur subunit of succinate dehydrogenase in Arabidopsis thaliana. Plant Mol Biol 46:241–250

    Article  PubMed  CAS  Google Scholar 

  • Fowler JH, Vasquez JN, Aromdee DN, Pautot V, Holzer FM, Walling LL (2009) Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell 2:1239–1251

    Article  CAS  Google Scholar 

  • Gabaldon T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 348:857–870

    Article  PubMed  CAS  Google Scholar 

  • Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophy Acta 1592:63–77

    Article  CAS  Google Scholar 

  • Geisler DA, Päpke C, Obata T, Nunes-Nesi A, Matthes A, Schneitz K et al (2012) Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis. Plant Cell 24:72792–72811

    Article  CAS  Google Scholar 

  • Gietl C (1992) Partitioning of malate dehydrogenase isoenzymes into glyoxysomes, mitochondria, and chloroplasts. Plant Physiol 100(2):557–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochem 71:1615–1624

    Article  CAS  Google Scholar 

  • Gullıa M, Corradia M, Rampinob P, Marmirolia N, Perrotta C (2007) Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. FEBS Lett 581:4841–4849

    Article  CAS  Google Scholar 

  • Haake V, Zrenner R, Sonnewald U, Stitt M (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14:147–157

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Sano T, Hasezawa S (2007) Actin microfilament dynamics and actin side-binding proteins in plants. Curr Opin Plant Biol 10:549–556

    Article  PubMed  CAS  Google Scholar 

  • Hillocks RJ, Raya MD, Mtunda K, Kiozia H (2001) Effects of brown streak virus disease on yield and quality of cassava in Tanzania. J Phytopathol 149:389–394

    Article  Google Scholar 

  • Houston NL, Fan C, Xiang QY, Schulze JM, Jung R, Boston RS (2005) Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol 37:762–778

    Article  CAS  Google Scholar 

  • Huang S, Millar AH (2013) Sequence diversity and conservation in factors influencing succinate dehydrogenase flavinylation. Plant Signal Behav 8:e22815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurkma WJ, Tanaka CK (1986) Solubilization if plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  Google Scholar 

  • Kleczkowski LA, Geisler M, Ciereszko I, Johansson H (2004) UDP-glucose pyrophosphorylase: an old protein with new tricks. Plant Physiol 134:912–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kloosterman B, Vorst O, Hall RD, Visser RG, Bachem CW (2005) Tuber on a chip: differential gene expression during potato tuber development. Plant Biotech J 3:505–519

    Article  CAS  Google Scholar 

  • Lal A, Plaxton WC, Kayastha AM (2005) Purification and characterization of an allosteric fructose-1,6-bisphosphate aldolase from germinating mung beans (Vigna radiata). Phytochem 66:968–974

    Article  CAS  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Koistinen KM, Massat N, Nunan N et al (2006) Proteomic analysis of the potato tuber life cycle. Proteomics 6:6042–6052

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang X, Qin T, Zhang Y, Liu X, Sun J et al (2011) MDP25, A novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23:4411–4427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li K, Zhu W, Zeng K, Zhang Z, Ye J, Ou W et al (2010) Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. Proteom Sci 8:10

    Article  CAS  Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laohavisit A, Davies JM (2011) Annexins. New Phytol 189:40–53

    Article  PubMed  CAS  Google Scholar 

  • Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB et al (2011) iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J 67:145–156

    Article  PubMed  CAS  Google Scholar 

  • Lutziger I, Oliver DJ (2001) Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol 127:615–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mak Y, Skylasb DJ, Willows R, Connolly A, Cordwell SJ, Wrigley CW et al (2006) A proteomic approach to the identification and characterisation of protein composition in wheat germ. Funct Integr Genom 6:322–337

    Article  CAS  Google Scholar 

  • Mano J, Torii Y, Hayashi S, Takimoto K, Matsui K, Nakamura K et al (2002) The NADPH:quinone oxidoreductase P1-Z-crystallin in Arabidopsis catalyzes the α, β-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol 43:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Belles-Boix E, Babiychuk E, Inze´ D, Torii Y, Hiraoka E et al (2005) Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase detoxication of lipid peroxide-derived reactive carbonyls. Plant Physiol 139:1773–1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T et al (2010) Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51:190–200

    Article  PubMed  CAS  Google Scholar 

  • Medina RD, Faloci MM, Gonzalez AM, Mroginski LA (2007) In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs. Ann Bot 99:409–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitprasat M, Roytrakul S, Jiemsup S, Boonseng O, Yokthongwattana K (2011) Leaf proteomic analysis in cassava (Manihot esculenta Crantz) during plant development, from planting of stem cutting to storage root formation. Planta 233:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Muller GL, Drincovich MF, Andreo CS, Lara MV (2008) Nicotiana tabacum NADP-aalic enzyme: cloning, characterization and analysis of biological role. Plant Cell Physiol 49:469–480

    Article  PubMed  CAS  Google Scholar 

  • Myouga F, Motohashi R, Kuromori T, Nagata N, Shinozaki K (2006) An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant J 48:249–260

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KL, Grønkjær K, Welinder KG, Emmersen J (2005) Global transcript profiling of potato tuber using LongSAGE. Plant Biotech J 3:175–185

    Article  CAS  Google Scholar 

  • Onda Y, Nagamine A, Sakurai M, Kumamaru T, Ogawa M, Kawagoe Y (2011) Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. Plant Cell 23:210–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ondzighi WCA, Christopher DA, Cho EJ, Chang SC, Staehelin LA (2008) Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20:2205–2220

    Article  CAS  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant J 50:381–390

    Article  PubMed  CAS  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar D (2008) The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis. Plant Cell Rep 27:1–8

    Article  PubMed  CAS  Google Scholar 

  • Robison MM, Ling X, Smid MPL, Zarei A, Wolyn DJ (2009) Antisense expression of mitochondrial ATP synthase subunits OSCP (ATP5) and γ (ATP3) alters leaf morphology, metabolism and gene expression in Arabidopsis. Plant Cell Physiol 50:1840–1850

    Article  PubMed  CAS  Google Scholar 

  • Ryazantseva S, Abuladzeb N, Newmanb D, Bondarb G, Kurtzb I, Pushkin A (2007) Structural characterization of dimeric murine aminoacylase III. FEBS Lett 581:1898–1902

    Article  CAS  Google Scholar 

  • Schnarrenberger C, Krüger I (1986) Distinction between cytosol and chloroplast fructose-bisphosphate aldolases from pea, wheat, and corn leaves. Plant Physiol 80:301–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheffield J, Taylor N, Fauquet C, Chen S (2006) The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics 6:1588–1598

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745

    Article  PubMed  CAS  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuka I, Koga-Ban Y, Sasaki T, Minobe Y, Hashimoto J (1994) Identification of cDNA clones for rice homologs of the human immunodeficiency virus-1 Tat binding protein and subunit 4 of human 26S protease (proteasome). Plant Sci 103:33–40

    Article  CAS  Google Scholar 

  • Suzuka I, Yanagawa Y, Yamazaki K, Ueda T, Nakagawa H, Hashimoto J (1998) Biochemical and immunological characterization of rice homologues of the human immunodeficiency virus-1 Tat binding protein and subunit 4 of human 26S proteasome subunits. Plant Mol Biol 3:495–504

    Article  Google Scholar 

  • Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19:800–811

    Article  CAS  Google Scholar 

  • Tomaz T, Bagard M, Pracharoenwattana I, Lindne´ P, Lee CP, Carroll AJ et al (2010) Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol 154:1143–1157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voll LM, Zell MB, Engelsdorf T, Saur A, Wheeler MG, Drincovich MF et al (2012) Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. New Phytol 195:189–202

    Article  PubMed  CAS  Google Scholar 

  • Wadahama H, Kamauchi S, Nakamoto Y, Nishizawa K, Ishimoto M, Kawada T et al (2008) A novel plant protein disulfide isomerase family homologous to animal P5—molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins. FEBS J 275:399–410

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trend Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Wang W, Feng F, Xiao J, Xia Z, Zhou X, Li P et al (2014) Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 5:5110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watananonta W (2006) Present situation and its future potential of cassava poduction and utilization in Thailand. Paper presented at the FEALAC inter-regional workshop on clean fuels and vehicle technologies: the role of science and innovation

  • Wattenberg BW, Raub TJ, Hiebsch RR, Weidmanw PJ (1992) Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (aSNAP) during vesicle formation. J Cell Biol 118:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flügge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, An D, Zhang P (2011) Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. J Integr Plant Bio 3:193–211

    Article  CAS  Google Scholar 

  • Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, Gallie DR (2001) Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol 127:77–91

    Article  Google Scholar 

  • Yui R, Iketani S, Mikimi T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum causes male sterility. Plant J 34:57–66

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Gruissem IPW (2003) Two cassava promoters related to vascular expression and storage root formation. Planta 218:192–203

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Slevin J, Whiteheart SW (2007) Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 581:2140–2149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Mahidol University and National Center for Genetic Engineering and Biotechnology (BIOTEC), Thaialnd Grant No. BT-B-01-PG-14-4807. We are grateful to Dr. Opas Boonseng (Rayong Field Crop Research Center, Thailand) for kindly manage the cassava cultivars and plantation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarunya Narangajavana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2015_761_MOESM1_ESM.pdf

Table S1 Description of membrane proteins identified from cassava storage root. Spot, spot number corresponding to that as appeared in Fig. 2; Accession, accession number of the protein available in the NCBI database; Protein name, matched protein description; Organism, the organism of the matched protein; pI/Mr gel, pI and molecular weight of the protein on the gel; pI/Mr theory, theoretical pI and molecular weight of the deduced amino acid sequence of the matched protein; Score, the score obtained from MascotTM for each match; Evalue, expected value obtained from EST blast against NCBI database; NP, number of matched peptides (PDF 19 kb)

10265_2015_761_MOESM2_ESM.pdf

Table S2 Description of soluble proteins identified from cassava storage root. Spot, spot number corresponding to that as appeared in Supplement Figure S1; Accession, accession number of the protein available in the NCBI database; Protein name, matched protein description; pI/Mr gel, pI and molecular weight of the protein on the gel; pI/Mr theory, theoretical pI and molecular weight of the deduced amino acid sequence of the matched protein (PDF 15 kb)

10265_2015_761_MOESM3_ESM.pdf

Fig. S1 Reference map for 2DE pattern of soluble proteins from cassava storage root. The soluble protein of 250 ug was separated by IEF using a 13-cm IPG strip with a linear pI gradient of 4-7 followed by 12 % SDS-PAGE and colloidal Coomassie staining. Each protein spot was given a number and the details of each protein spot were listed in supplement Table S2 (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naconsie, M., Lertpanyasampatha, M., Viboonjun, U. et al. Cassava root membrane proteome reveals activities during storage root maturation. J Plant Res 129, 51–65 (2016). https://doi.org/10.1007/s10265-015-0761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0761-4

Keywords

Navigation