Skip to main content
Log in

Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant’s physiological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, Climent ML, Gómez-Cadenas A, Nicolás C (2009) Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Sig Beh 4:750–751

    Article  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Gullner BBG, Janeczko A, Kogel K, Schäfer P, Schwarczinger P, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–551

    Article  CAS  PubMed  Google Scholar 

  • Barrero JM, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29:2000–2008

    Article  CAS  PubMed  Google Scholar 

  • Bomke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 74:5325–5339

    Article  PubMed Central  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Xiang CB (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    Article  CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghelis T, Dellis O, Jeannette E, Dardat F, Cornel D, Miginiac E, Rona JP, Sotta B (2000) Abscisic acid specific expression of RAB18 involves activation of anion channels in Arabidopsis thaliana suspension cells. FEBS Lett 474(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Iqbal I, Ahmad B, Lee IJ (2010a) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20:202–207

    CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Lee IJ (2010b) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Harrower J, Wildermuth MC (2011) Exogenous salicylic acid treatment of Arabidopsis thaliana Col-0. NCBI Gene Expression Omnibus Accession No. GSE33402

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Hyakumachi M (2008) Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304:227–239

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2010) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exper Botany. doi:10.1016/j.envexpbot.2010.06.002

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmedi L, Metraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis Salt and Drought Stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan SA, Hamayun M, Kim YH, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–862

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2013a) Endophytic fungi: a source of gibberellins and crop resistance to abiotic stress. Crit Rev Biotech. doi:10.3109/07388551.2013.800018

    Google Scholar 

  • Khan AL, Kang SM, Dakal HK, Hussain J, Adnan M, Kim JG, Lee IJ (2013b) Flavonoid and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Sci Hort 155:1–7

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2013c) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbial 13:1–13

    Article  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lee IJ, Foster K, Morgan PW (1998) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Abrishamchi A, Khoshbakht K, Niknam V (2012) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol. doi:10.3109/07388551.2012.731684

    PubMed  Google Scholar 

  • Nicolas R, Jean-Pierre J (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  Google Scholar 

  • Pal M, Kovács V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T (2014) Salicylic acid and abiotic stress responses in rice. J Agron Crop Sci 200:1–11

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Cur Opin Plant Biol 14:290–295

    Article  CAS  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823. doi:10.1371/journal.pone.0014823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Elizabeth JH, Marshal V, Leesa H, Beckwith LB, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Schafer P, Pfiffi S, Voll LM, Zajic D, Chandler PM et al (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Lee AK, Xiang F, Park CM (2008) Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol 49:334–344

    Article  CAS  PubMed  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  PubMed Central  CAS  Google Scholar 

  • Shinozaki YK, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  Google Scholar 

  • Troncoso C, Gonzalez X, Bomke C, Tudzynski B, Gong F, Hedden P, Rojas MC (2010) Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochemistry 71:1322–1331

    Article  CAS  PubMed  Google Scholar 

  • Tuna LA, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exper Bot 62:1–9

    Article  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signalling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed Central  PubMed  Google Scholar 

  • Vicente MR, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and Development. J Exper Bot 62:3321–3338

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von-Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Nat Acad Sci USA 102:13386–13391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Eduardo Blumwald, University of California—Davis, for his suggestions during manuscript preparation. This work was financially supported by the Eco-Innovation Project of the Korean Government’s R & D program on Environmental Technology and Development and National Research Foundation Korea (Project # 2011-0022027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.L., Waqas, M. & Lee, IJ. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J Plant Res 128, 259–268 (2015). https://doi.org/10.1007/s10265-014-0688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0688-1

Keywords

Navigation