Skip to main content
Log in

New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4RL) and 6R (6RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4RL and 6RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5DS) on which rye chromosome 4R was fused through the short arm 4RS (designated 5DS-4RS·4RL; 4RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4RS) that was attached to the short arm of wheat chromosome 5D (5DS) (designated 4RS-5DS·5DL; 5DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5DS-4RS·4RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An DG, Li LH, Li JM, Li HJ, Zhu YG (2006) Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. J Integr Plant Biol 48:838–847

    Article  Google Scholar 

  • An DG, Zheng Q, Zhou YL, Ma PT, Lv ZL, Li LH, Li B, Luo QL, Xu HX, Xu YF (2013) Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res 21:419–432

    Article  PubMed  CAS  Google Scholar 

  • Camacho MV, Matos M, González C, Pérez-Flores V, Pernaute B, Pinto-Carnide O, Benito C (2005) Secale cereale inter-microsatellites (SCIMs): chromosomal location and genetic inheritance. Genetica 123:303–311

    Article  PubMed  CAS  Google Scholar 

  • Ceoloni C, Signore GD, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistance transfers. Hereditas 116:239–245

    Article  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    PubMed  CAS  Google Scholar 

  • Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, Dhaliwal HS, Singh K (2012) Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet 124:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploidy Triticeae. Cytogenet Genome Res 109:34–42

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Han FP, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Xia XC, Chen XM, Zhuang QS (2011) Progress of wheat breeding in China and the future perspective. Acta Agron Sin 37:202–215 (In Chinese with English abstract)

    Article  Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370

    Article  Google Scholar 

  • Jakobson I, Reis D, Tiidema A, Peusha H, Timofejeva L, Valárik M, Kladivová M, Šimková H, Doležel J, Järve K (2012) Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line. Theor Appl Genet 125:609–623

    Article  PubMed  Google Scholar 

  • Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    Article  PubMed  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RELP-based maps of the homoelogous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  PubMed  CAS  Google Scholar 

  • Liu SB, Wang HG (2005) Characterization of a wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica 143:229–233

    Article  Google Scholar 

  • Lukaszewski AJ, Porter DR, Baker CA, Rybka K, Lapinski B (2001) Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat. Crop Sci 41:1743–1749

    Article  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Lutz J, Limpert E, Bartoš P, Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) Ι. Czechoslovakian cultivars. Plant Breed 108:33–39

    Article  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593

    Article  PubMed  CAS  Google Scholar 

  • Sepsi A, Molnár I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Zhuang LF, Sun L, Feng YG, Pei ZY, Qi ZJ (2010) Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of Secale cereale L. cv. ‘Jingzhouheimai’. Euphytica 176:157–166

    Article  CAS  Google Scholar 

  • Xie CJ, Sun QX, Ni ZF, Yang T, Nevo E, Fahima T (2003) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106:341–345

    PubMed  CAS  Google Scholar 

  • Xie WL, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    Article  PubMed  CAS  Google Scholar 

  • Xue F, Ji WQ, Wang CY, Zhang H, Yang BJ (2012) High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor Appl Genet 124:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Yang ZJ, Ren ZL (1997) Expression of gene Pm8 for resistance to powdery mildew in wheat from Sichuan. J Sichuan Agric Univ 15:452–456 (In Chinese with English abstract)

    Google Scholar 

  • Yu SY, Long H, Yang H, Zhang J, Deng GB, Pan ZF, Zhang EL, Yu MQ (2012) Molecular detection of rye (Secale cereale L.) chromatin in wheat line 07jian126 (Triticum aestivum L.) and its association to wheat powdery mildew resistance. Euphytica 186:247–255

    Article  Google Scholar 

  • Zeller FJ, Koller OL (1981) Identification of a 4A/7R and a 7B/4R wheat-rye chromosome translocation. Theor Appl Genet 59:33–37

    PubMed  CAS  Google Scholar 

  • Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    Article  CAS  Google Scholar 

  • Zeng Z, Fu TH, Tang Y, Chen Y, Ren ZL (2007) Identification and chromosomal locations of novel genes for resistance to powdery mildew and stripe rust in a wheat line 101-3. Euphytica 156:89–94

    Article  Google Scholar 

  • Zhuang LF, Sun L, Li AX, Chen TT, Qi ZJ (2011) Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Mol Breed 27:455–456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National High Technology Research and Development Program (“863” Program) of China (No. 2011AA100101) and the National Natural Science Foundation of China (No. 31000713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulan Fu or Zongxiang Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2014_659_MOESM1_ESM.tif

Figure 1S PCR analysis with 4RL-specific primer SCIM808986 in wheat-rye addition and translocation lines. ‘MAL’, ‘CS’, ‘My11’ and ‘DM’ mean ‘monosomic addition line’, ‘Chinese Spring’, ‘Mianyang 11’ and ‘DNA marker’, respectively, Arrows indicate the 4RL-specific band (TIFF 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Ren, Z., Chen, X. et al. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. J Plant Res 127, 743–753 (2014). https://doi.org/10.1007/s10265-014-0659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0659-6

Keywords

Navigation