Skip to main content

Advertisement

Log in

Identification of early induced genes upon water deficit in potato cell cultures by cDNA-AFLP

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

For plant cells in the early phases of water stress exposure, the genes induced under such conditions play a key role in detecting and responding to water deficit. In this study, potato cell suspensions were used as a simplified model system to dissect early molecular changes upon low water potential. In particular, the cDNA-amplified fragment length polymorphism approach was used to capture genes rapidly activated in potato cell cultures in response to water deficit induced by short-term exposure (up to 1 h) to polyethylene glycol. Selective amplifications with 38 primer combinations allowed the visualization of about 167 transcript-derived fragments (TDFs) differentially expressed upon exposure to low water potential. The gene expression pattern of 18 up-regulated genes was further investigated by semi-quantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in chaperone activity and protein degradation (hsps, proteinase precursor), in protein synthesis (elongation factor, ribosomal proteins) and in the ROS scavenging pathway (phenylalanine ammonia-lyase, peroxidase). Our findings might contribute to describe the potential role of genes activated in the early phases of plant response to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST, a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Ambrosone A, Costa A, Frusciante A, Monti L, Leone A, Grillo S (2008) Unravelling the molecular cues and plant adaptation or survival to water deficit. Options Mediterranéennes A 84:85–91

    Google Scholar 

  • Ambrosone A, Costa A, Martinelli M, Massarelli I, De Simone V, Grillo S, Leone A (2011) Differential gene regulation in potato cells and plants upon abrupt or gradual exposure to water stress. Acta Physiol Plant 33:1157–1171

    Article  CAS  Google Scholar 

  • Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–18

    Article  PubMed  CAS  Google Scholar 

  • Andre CM, Schafleitner R, Guignard C, Oufir M, Aliaga CA, Nomberto G, Hoffmann L, Hausman JF, Evers D, Larondelle Y (2009) Modification of the health-promoting value of potato tubers field grown under drought stress: emphasis on dietary antioxidant and glycoalkaloid contents in five native Andean cultivars (Solanum tuberosum L.). J Agric Food Chem 57:599–609

    Article  PubMed  CAS  Google Scholar 

  • Bachem CW, Oomen R, Visser RG (1998) Transcript imaging with cDNA-AFLP: a step by step protocol. Plant Mol Biol Rep 16:157–173

    Article  CAS  Google Scholar 

  • Bachem CW, Oomen R, Kuyt S, Horvath B, Claassens M, Vreugdenhil D, Visser RG (2000) Antisense suppression of a potato alpha-SNAP homologue leads to alteration in cellular development and assimilate distribution. Plant Mol Bio 443:473–482

    Article  Google Scholar 

  • Bachem CW, Horvath B, Trindade L, Claassens M, Davelaar E, Jordi W, Visser RG (2001) A potato tuber-expressed mRNA with homology to steroid dehydrogenases, gibberellin levels and plant development. Plant J 25:595–604

    Article  PubMed  CAS  Google Scholar 

  • Baisakh N, Subudhi KP, Parami PN (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    Article  CAS  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89:803–811

    Article  PubMed  CAS  Google Scholar 

  • Broomfield S, Chow BL, Xiao W (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci USA 95:5678–5683

    Article  PubMed  CAS  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286:171–187

    Article  PubMed  CAS  Google Scholar 

  • Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira F (2007) Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem 71:2190–2197

    Article  PubMed  CAS  Google Scholar 

  • Chomeczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Costa A, Di Giacomo M, Massarelli I, De Palma M, Leone A, Grillo S (2010) Isolation, characterization and expression of an elongation factor 1α gene in potato (Solanum tuberosum) cell cultures. Plant Biosyst 144:618–625

    Article  Google Scholar 

  • Criqui MC, de Almeida Engler J, Camasses A, Capron A, Parmentier Y, Inzé D, Genschik P (2002) Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2-C/UBCx/UbcH10 gene family. Plant Physiol 130:1230–1240

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2004) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 1:268–281

    Google Scholar 

  • Deblonde PMK, Ledent JF (2001) Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron 14:31–41

    Article  Google Scholar 

  • Dellagi A, Birch P, Heilbronn J, Lyon G, Toth I (2000) cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. Microbiol 146:165–171

    CAS  Google Scholar 

  • Dunn TM, Lynch DV, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497

    Article  PubMed  CAS  Google Scholar 

  • Durrant W, Rowland O, Piedras P, Hammond-Kosack K, Jones J (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977

    PubMed  CAS  Google Scholar 

  • Elyse Ireland H, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  PubMed  CAS  Google Scholar 

  • Feussner K, Feussner I, Leopold I, Wasternack C (1997) Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants. FEBS Lett 409:211–215

    Article  PubMed  CAS  Google Scholar 

  • Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi A (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot 94:345–351

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  PubMed  CAS  Google Scholar 

  • Inuzuka M, Hayakawa M, Ingi T (2005) Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem 280:35776–35783

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–1162

    PubMed  CAS  Google Scholar 

  • Kim S, Fyrst H, Saba J (2000) Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae. Genetics 156:1519–1529

    PubMed  CAS  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Phytochemistry: advance in research. Research Signpost, Kerala, pp 23–67

  • Leone A, Costa A, Tucci M, Grillo S (1994a) Adaptation versus shock response to PEG-induced low water potential in cultured potato cells. Physiol Plant 92:21–30

    Article  CAS  Google Scholar 

  • Leone A, Costa A, Tucci M, Grillo S (1994b) Comparative analysis of short- and long-term changes in gene expression caused by low potential in potato (Solanum tuberosum) cell-suspension cultures. Plant Physiol 106:703–712

    PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. II. Water, radiation, salt and other stresses. Academic Press, New York

  • Monteiro de Paula F, Pham Thi AT, Vieira da Silva J, Justin AM, Demandre C, Mazliak P (1990) Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci 66:185–193

    Article  CAS  Google Scholar 

  • Napier JA, Michaelson LV, Dunn TM (2002) A new class of lipid desaturase central to sphingolipid biosynthesis and signaling. Trends Plant Sci 7:475–478

    Article  PubMed  CAS  Google Scholar 

  • Pham-Thi AT, Borrel-Flood C, Vieira da Silva J, Justin AM, Mazliak P (1985) Effects of water stress on lipid metabolism in cotton leaves. Phytochemistry 24:723–727

    Article  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Pyne S, Pyne N (2000) Sphingosine-1-phosphate signalling in mammalian cells. Biochem J 349:385–402

    Article  PubMed  CAS  Google Scholar 

  • Rains DW (1989) Plant tissue and protoplast culture: applications to stress physiology and biochemistry. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 181–196

  • Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G (2003) Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 82:606–618

    Article  PubMed  CAS  Google Scholar 

  • Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207

    Article  PubMed  CAS  Google Scholar 

  • Riis B, Rattan SIS, Clark BFC, Merrick WC (1990) Eukaryotic protein elongation factors. Trends Biochem Sci 15:420–424

    Article  PubMed  Google Scholar 

  • Rivero RM, Ruiz JM, Garcìa PC, Lòpez-Lefebre LR, Sànchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–332

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857

    Article  PubMed  Google Scholar 

  • Schafleitner R, Gutierrez Rosales RO, Gaudin A, Alvarado Aliaga CA, Martinez GN, Tincopa Marca LR, Bolivar LA, Delgado FM, Simon R, Bonierbale M (2007) Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol Biochem 45:673–690

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • van de Biezen E, Juwana H, Parker J, Jones J (2000) cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana. Mol Plant Microbe Interact 13:895–898

    Article  PubMed  Google Scholar 

  • Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, De Koeyer D, Schafleitner R, Willmot DB, Bonierbale M, Bohnert HJ, Grene R (2008) Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot 59:2109–2123

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acid Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Watkinson JI, Hendricks L, Sioson AA, Heath LS, Bohnert HJ, Grene R (2008) Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism. Plant Physiol Biochem 46:34–45

    Article  PubMed  CAS  Google Scholar 

  • Weisz R, Kaminski J, Smilowitz Z (1994) Water-deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil-water for comparison with other crops. Amer Pot J 71:829–840

    Article  Google Scholar 

  • Wen R, Newton L, Li G, Wang H, Xiao W (2006) Arabidopsis thaliana UBC13: implication of error-free DNA damage tolerance and Lys63-linked polyubiquitylation in plants. Plant Mol Biol 61:241–253

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka A, Hatakeyama S, Kominami K, Kitagawa M, Matsumoto M, Nakayama K (2000) Cell cycle dependent expression of mammalian E2-C regulated by the anaphase-promoting complex/cyclosome. Mol Biol Cell 11:2821–2831

    PubMed  CAS  Google Scholar 

  • Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132:861–869

    Article  PubMed  CAS  Google Scholar 

  • Zhang YY, Xie Q (2006) Ubiquitination in abscisic acid-related pathway. J Integr Plant Biol 49:87–93

    Article  Google Scholar 

  • Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17:3422–3435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express our thanks to Rosario Nocerino, Gaetano Guarino and Roberta Nurcato for excellent technical assistance and to Mark Walters for improving the quality of the manuscript. Contribution no. 371 of CNR-Institute of Plant Genetics (IGV), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosone, A., Di Giacomo, M., Leone, A. et al. Identification of early induced genes upon water deficit in potato cell cultures by cDNA-AFLP. J Plant Res 126, 169–178 (2013). https://doi.org/10.1007/s10265-012-0505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0505-7

Keywords

Navigation