Skip to main content

Advertisement

Log in

Low nitrogen-induced expression of cyclophilin in Nicotiana tabacum

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Leaf morphology and the leaf protein expression profiles of flue-cured tobacco grown in central Henan province of China under low nitrogen (low-N) and normal nitrogen (normal-N) nutrition were examined. The leaf length and width were measured at 50, 60, and 70 days after transplanting. Leaves grown under low-N conditions were shorter and more narrow than those grown under normal-N conditions. The protein expression profiles of tobacco leaves harvested at 70 days after transplanting were analyzed by 2-dimensional electrophoresis, and five differentially expressed proteins including a putative protein were identified. Except for the MCM protein-like protein, the other three differentially expressed proteins of cyclophilin-like protein, vacuolar invertase INV2, MAR-binding protein and the one putative protein showed increased expression in the low-N nutrition group. Among these proteins, the cyclophilin-like protein, which is a stress-responsive signal protein, may play pivotal roles in regulating leaf development under stress conditions. Real-time quantitative PCR analysis showed that the mRNA expression level of the cyclophilin-like protein at day 50, 60 and 70 under low-N conditions was 0.90, 1.43 and 6.9-fold higher than that under normal-N conditions, indicating that the gene expression of cyclophilin-like protein was strongly induced by low-N conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akehurst BC (1965) Effect of planting time on yield and quality of flue-cured tobacco in Iringa district, Tanzania. Exp Agr 1:305–313

    Article  Google Scholar 

  • Bénard C, Bourgaud F, Gautier H (2011) Impact of temporary nitrogen deprivation on tomato leaf phenolics. Int J Mol Sci 12:7971–7981

    Article  PubMed  Google Scholar 

  • Berardini TZ, Bollman K, Sun H, Poethig RS (2001) Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science 291:2405–2407

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang J (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    Article  PubMed  CAS  Google Scholar 

  • Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine kinase itk by the peptidyl-prolylisomerase cyclophilin A. Proc Natl Acad Sci USA 99:1899–1904

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Chen RK, Harris JC, Zhang H, Hamiaux C, Kralicek AV, McKenzie MJ (2011) Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J Exp Bot 62:3519–3534

    Article  PubMed  CAS  Google Scholar 

  • Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245

    Article  PubMed  CAS  Google Scholar 

  • Chou IT, Gasser CS (1997) Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenefic analysis of known cyclophilin proteins. Plant Mol Biol 35:873–892

    Article  PubMed  CAS  Google Scholar 

  • Collins WK, Hawks JSN (1993) Principles of flue-cured tobacco production. North Carolina State University, Raleigh, pp 97–139

    Google Scholar 

  • Forsburg SL (2004) Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev 68:109–131

    Article  PubMed  CAS  Google Scholar 

  • Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: an analysis of the cyclophilin family of proteins. Arch Biochem Biophys 371:149–162

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1987) A glimpse at chromosomal order. Trends Genet 3:16–22

    Article  CAS  Google Scholar 

  • Gasser CS, Gunning DA, Budelier KA, Brown SM (1990) Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Nat Acad Sci USA 87:9519–9523

    Article  PubMed  CAS  Google Scholar 

  • Godoy AV, Lazzaro AS, Casalongue CA, San SB (2000) Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci 152:123–134

    Article  CAS  Google Scholar 

  • Grabowski B, Kelman Z (2003) Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol 57:487–516

    Article  PubMed  CAS  Google Scholar 

  • Greiner S, Rausch T, Sonnewald U, Herbers K (1999) Ectopic expression of a tobacco invertase inhibitor homolog prevents coldinduced sweetening of potato tubers. Nat Biotechnol 17:708–711

    Article  PubMed  CAS  Google Scholar 

  • Ivanchenko MG, Coffeen WC, Lomax TL, Dubrovsky JG (2006) Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Plant J 46:436–447

    Article  PubMed  CAS  Google Scholar 

  • Joseph JD, Heimmn J, Means AR (1999) Molecular cloning and characterization of Aspergillus nidulans cyclophilin. B Fungal Genet Biol 27:55–66

    Article  CAS  Google Scholar 

  • Kambara H, Tani H, Mori Y, Abe T, Katoh H, Fukuhara T, Taguwa S, Moriishi K, Matsuura Y (2011) Involvement of cyclophilin B in the replication of Japanese encephalitis virus. Virology 412:211–219

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Characterization of cytosolic cyclophilin from guard cells of Vicia faba L. Plant Cell Physiol 40:53–59

    Article  PubMed  CAS  Google Scholar 

  • Kullertz G, Liebau A, Rucknagel P, Schierhora A, Dicttrich B, Fischer G, Ljuckncr M (1999) Stress-induced expression of cyclophilins in proembryonic masses of Digitalis lanata does not protect against freezing/thawing stress. Planta 208:599–605

    Article  PubMed  CAS  Google Scholar 

  • Leonardo AMZ, Baudo MM, Palva ET, Heino P (1998) Isolation and characterization of a cDNA corresponding to a stress-activated cyclophilin gene in Solanum commersonii. J Exp Bot 49:1451–1452

    Google Scholar 

  • Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan SA (2007) WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell 19:2403–2416

    Article  PubMed  CAS  Google Scholar 

  • Li B, Xu W, Xu Y, Zhang Y, Wang T, Bai Y, Han C, Zhang A, Xu Z, Chong K (2010) Integrative study on proteomics, molecular physiology, and genetics reveals an accumulation of cyclophilin-like protein, TaCYP20-2, leading to an increase of Rht protein and dwarf in a novel GA-insensitive mutant (gaid) in wheat. J Proteome Res 9:4242–4253

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Lane WS, Schreiber S (1994) pCyP B: a cyclophilin chloroplast-localized,heat shock-responsive from fava bean. Plant Cell 6:885–892

    PubMed  CAS  Google Scholar 

  • Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, Sun T, He P, Chen J, Shen J, Luo X, Li Y, Liu H, Bai D, Shen J, Yang Y, Li F, Zuo J, Hilgenfeld R, Pei G, Chen K, Shen X, Jiang H (2004) Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 321:557–565

    Article  PubMed  CAS  Google Scholar 

  • Marchetti R, Castelli F, Contillo R (2006) Nitrogen requirements for flue-cured tobacco. Agron J 98:666–674

    Article  CAS  Google Scholar 

  • Marivet J, Frendo P, Burkard G (1992) Effects of abiotic stresses on cyclophilin gene expression in maize and bean and sequence analysis of bean cyclophilin cDNA. Plant Sci 84:171–178

    Article  CAS  Google Scholar 

  • Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM (2011) Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci USA 108:20130–20135

    Article  PubMed  CAS  Google Scholar 

  • Nelson WG, Pienta KJ, Barrack ER, Coffey DS (1986) The role of the nuclear matrix in the organization and function of DNA. Annu Rev Biophys Biophys Chem 15:457–475

    Article  PubMed  CAS  Google Scholar 

  • Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224:133–144

    Article  PubMed  CAS  Google Scholar 

  • Opiyo SO, Moriyama EN (2009) Mining the Arabidopsis and rice genomes for cyclophilin protein families. Int J Bioinform Res App 1:295–309

    Article  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745

    Article  PubMed  CAS  Google Scholar 

  • Raper CD, Patterson DT, Parsons LR, Kramer PJ (1977) Relative growth and nutrient accumulation rates for tobacco. Plant Soil 46:473–486

    Article  CAS  Google Scholar 

  • Romano PGN, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134:1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Wilhelmi Mdel M, Sanchez-Rodriguez E, Rosales MA, Blasco B, Rios JJ, Romero L, Blumwald E, Ruiz JM (2011a) Cytokinin-dependent improvement in transgenic P(SARK):IPT tobacco under nitrogen deficiency. J Agric Food Chem 59:10491–10495

    Article  PubMed  Google Scholar 

  • Rubio-Wilhelmi Mdel M, Sanchez-Rodrigueza E, Rosalesa MA, Blasco B, Riosa JJ, Romeroa L, Ruiz JM (2011b) Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environ Exp Bot 72:167–173

    Article  Google Scholar 

  • Rubio-Wilhelmi Mdel M, Sanchez-Rodriguez E, Rosales MA, Blasco B, Rios JJ, Romero L, Blumwald E, Ruiz JM (2012) Ammonium formation and assimilation in P(SARK):IPT tobacco transgenic plants under low N. J Plant Physiol 169:157–162

    Article  PubMed  Google Scholar 

  • Rycyzyn MA, Clevenger CV (2002) The intranuclear prolactin cyclophilin B complex as a transcriptional inducer. Proc Nat1 Acad Sci USA 99:6790–6795

    Google Scholar 

  • Satio T, Nivva Y, Ashida H, Tanaka K, Kawamukai M, Matsuda H, Nakagawa T (1999) Expression of a gene from cyclophilin which contains an amino-tirminal endoplasmic reticulum targeting signal. Plant Cell Physiol 40:77–87

    Article  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Su S, Zhou Y, Qin JG, Wang W, Yao W, Song L (2012) Physiological responses of Egeria densa to high ammonium concentration and nitrogen deficiency. Chemosphere 86:538–545

    Article  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yu X, Song L, An C (2011) Nitrogen deficiency system is helpful in characterizing regulation mechanisms of ectopic triacylglycerol accumulation in Arabidopsis seedlings. Plant Signal Behav 6:2042–2043

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Hatziioannou T, Zang T, Braaten D, Luban J, Goff SP, Bieniasz PD (2002) Envelope-dependent, cyclophilin-independent effects of glycosaminoglycans on human immunodeficiency virus type 1 attachment and infection. J Virol 76:6332–6343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of Major Project from State Tobacco Monopoly Administration of China (No. 110201101001) and Natural Science Fundamental Research Program of Henan Education Department (No. 2011A210019). We thank Dr. Xiaowen Yang in University of Leicester, UK and Dr. Neil Fannin in University of Kentucky, USA very much for the English writing revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoshun Liu or Hongzhi Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Xu, L., Cui, H. et al. Low nitrogen-induced expression of cyclophilin in Nicotiana tabacum . J Plant Res 126, 121–129 (2013). https://doi.org/10.1007/s10265-012-0499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0499-1

Keywords

Navigation