Skip to main content
Log in

Effect of silicon deficiency on secondary cell wall synthesis in rice leaf

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is a typical Si-accumulating plant and is able to accumulate Si up to >10 % of shoot dry weight. The cell wall has been reported to become thicker under Si-deficient condition. To clarify the relationship between Si accumulation and cell wall components, the physical properties of, and macromolecular components and Si content in, the pectic, hemicellulosic, and cellulosic fractions prepared from rice seedlings grown in hydroponics with or without 1.5 mM silicic acid were analyzed. In the absence of Si (the −Si condition), leaf blades drooped, but physical properties were enhanced. Sugar content in the cellulosic fraction and lignin content in the total cell wall increased under −Si condition. After histochemical staining, there was an increase in cellulose deposition in short cells and the cell layer just beneath the epidermis in the −Si condition, but no significant change in the pattern of lignin deposition. Expression of the genes involved in secondary cell wall synthesis, OsCesA4, OsCesA7, OsPAL, OsCCR1 and OsCAD6 was up-regulated under −Si condition, but expression of OsCesA1, involved in primary cell wall synthesis, did not increase. These results suggest that an increase in secondary cell wall components occurs in rice leaves to compensate for Si deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2009) Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol 50:1886–1897

    Article  PubMed  CAS  Google Scholar 

  • Bart RS, Chern M, Vega-Sanchez ME, Canlas P, Ronald PC (2010) Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet 6:e1001123

    Article  PubMed  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Cu Y, Bell AA, Joost O, Magill CW (2000) Expression of potential defense response genes in cotton. Physiol Mol Plant Pathol 56:25–31

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  PubMed  CAS  Google Scholar 

  • Gayoso C, Pomar F, Novo-Uzal E, Merino F, de Ilárduya OM (2010) The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol 10:232

    Article  PubMed  Google Scholar 

  • Gibeaut DM, Carpita NC (1994) Biosynthesis of plant cell wall polysaccharides. FASEB J 8:904–915

    PubMed  CAS  Google Scholar 

  • Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2010) Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta 232:95–108

    Article  PubMed  CAS  Google Scholar 

  • Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M (2012) OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep 31:91–101

    Article  PubMed  CAS  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Matsunaga T (2009) Aqueous macromolecules with silicon from alcohol-insoluble residues of rice seedlings. JARQ 42:181–186

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. W.H. Freeman and Co., San Francisco

    Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103:230–235

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Kim SG, Park EW, Choi D (2002) Silicon-induced cell wall fortification or rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103

    Article  PubMed  Google Scholar 

  • Korth KL, Blount JW, Chen F, Rasmussen S, Lamb C, Dixon RA (2001) Changes in phenylpropanoid metabolites associated with homology dependent silencing of phenylalanine ammonialyase and its somatic reversion in tobacco. Physiol Plant 111:137–143

    Article  CAS  Google Scholar 

  • Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S (2011) Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot 62:2053–2062

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J (2003) BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15:2020–2031

    Article  PubMed  CAS  Google Scholar 

  • Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wu HX, Southerton SG (2011) Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene 487:62–71

    Article  PubMed  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plant to biotic and abiotic stress. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer and plant silicon research in Japan. Elsevier Science, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007a) An efflux transporter of silicon in rice. Nature 448:209–213

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Tanami K, Mitani N (2007b) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145:919–924

    Article  PubMed  CAS  Google Scholar 

  • Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542

    Article  PubMed  CAS  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  PubMed  CAS  Google Scholar 

  • Rogers LA, Campbel MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    Article  CAS  Google Scholar 

  • Selvendran RR, O’Neill MA (2006) Isolation and analysis of cell walls from plant material. In: Glick D (ed) Methods of biochemical analysis, vol 32. Wiley, Hoboken, pp 52–78

    Google Scholar 

  • Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Smit F, Dubery LA (1997) Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry 44:811–815

    Article  CAS  Google Scholar 

  • Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol 26:337–340

    Article  CAS  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83

    Article  PubMed  CAS  Google Scholar 

  • Tobias CM, Chow EK (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220:678–688

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 10:282

    Article  PubMed  CAS  Google Scholar 

  • Wardrop AB (2004) Lignification and xylogenesis. In: Brnett JR (ed) Xylem cell development. Castle House Publication Ltd., Kent, p 115

    Google Scholar 

  • Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883

    Article  PubMed  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, GMA0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Nakamura, A., Iwai, H. et al. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 125, 771–779 (2012). https://doi.org/10.1007/s10265-012-0489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0489-3

Keywords

Navigation