Skip to main content
Log in

Molecular phylogenetics of subtribe Aeridinae (Orchidaceae): insights from plastid matK and nuclear ribosomal ITS sequences

  • Original Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

We conducted phylogenetic analyses using two DNA sequence data sets derived from matK, the maturase-coding gene located in an intron of the plastid gene trnK, and the internal transcribed spacer region of 18S–26S nuclear ribosomal DNA to examine relationships in subtribe Aeridinae (Orchidaceae). Specifically, we investigated (1) phylogenetic relationships among genera in the subtribe, (2) the congruence between previous classifications of the subtribe and the phylogenetic relationships inferred from the molecular data, and (3) evolutionary trends of taxonomically important characters of the subtribe, such as pollinia, a spurred lip, and a column foot. In all, 75 species representing 62 genera in subtribe Aeridinae were examined. Our analyses provided the following insights: (1) monophyly of subtribe Aeridinae was tentatively supported in which 14 subclades reflecting phylogenetic relationships can be recognized, (2) results are inconsistent with previous classifications of the subtribe, and (3) repeated evolution of previously emphasized characters such as pollinia number and apertures, length of spur, and column foot was confirmed. It was found that the inconsistencies are mainly caused by homoplasy of these characters. At the genus level, Phalaenopsis, Cleisostoma, and Sarcochilus are shown to be non-monophyletic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann MO Bot Gard 82:247–277

    Google Scholar 

  • Bateman RM, Hollingsworth PM, Preston J, Yi-Bo L, Pridgeon AM, Chase MW (2003) Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot J Linn Soc 142:1–40

    Google Scholar 

  • van den Berg C, Higgins WE, Dressler RL, Whitten WM, Soto Arenas MA, Culham A, Chase MW (2000) A phylogenetic analysis of Laeliinae (Orchidaceae) based on sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA. Lindleyana 15:96–114

    Google Scholar 

  • van den Berg C, Goldman DH, Freudenstein JV, Pridgeon AM, Cameron KM, Chase MW (2005) An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). Am J Bot 92:613–624

    Google Scholar 

  • Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224

    Google Scholar 

  • Carlsward BS, Whitten WM, Williams NH (2003) Molecular phylogenetics of Neotropical leafness Angraecinae (Orchidaceae): reevaluation of generic concepts. Int J Plant Sci 164:43–51

    Google Scholar 

  • Chase MW (2005) Classification of Orchidaceae in the age of DNA data. Curtis’s Bot Mag 1:2–7

    Google Scholar 

  • Christenson EA (1986a) Nomenclatural changes in the Orchidaceae subtribe Sarcanthinae. Selbyana 9:167–170

    Google Scholar 

  • Christenson EA (1986b) Dyakia, a new genus from Borneo. Orchid Dig 50:63–65

    Google Scholar 

  • Christenson EA (1987) The taxonomy of Aerides and related genera. Proceedings of the 12th World Orchid Conference, Tokyo

  • Christenson EA (1994) Taxonomy of the Aeridinae with an infrageneric classification of Vanda Jones ex R.B. Proceedings of the 14th World Orchid Conference. HMSO Publications, London

  • van den Cingel NA (2001) An atlas of orchid pollination; America, Africa, Asia and Australia. AA Balkema, Rotterdam

    Google Scholar 

  • Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 19:432–437

    Google Scholar 

  • Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge

    Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides, Portland

    Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Google Scholar 

  • Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Freudenstein JV, Rasmussen FN (1999) What does morphology tell us about orchid relationships? a cladistic analysis. Am J Bot 86:225–248

    Google Scholar 

  • Garay LA (1972) On the systematics of the monopodial orchids I. Bot Mus Lealf Harv Univ 23:149–212

    Google Scholar 

  • Goldman DH, Freudenstein JV, Kores PJ, Molvray M, Jarrell DC, Whitten WM, Cameron KM, Jansen RJ, Chase MW (2001) Phylogenetics of Arethuseae (Orchidaceae) based on plastid matK and rbcL sequences. Syst Bot 26:670–695

    Google Scholar 

  • Gravendeel B, Chase MW, Vogel EFD, Roos MC, Mes THM, Bachman K (2001) Molecular phylogeny of Coelogyne (Epidendroideae; Orchidaceae) based on plastid RFLPS, matK and nuclear ribosomal ITS sequences: evidence for polyphyly. Am J Bot 88:1951–1927

    Google Scholar 

  • Holttum RE (1958) Evolutionary trends in the sarcanthine orchids. Proceedings of the Second World Orchid Conference. Harvard University Printing Office, Cambridge

  • Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11:152–158

    Google Scholar 

  • Jarrell DC, Clegg MT (1995) Systematic implications of the chloroplast-encoded matK gene on the tribe Vandeae (Orchidaceae). Am J Bot 82 (Suppl):137

    Google Scholar 

  • Johnson LE, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae sensu stricto. Syst Bot 19:143–156

    Google Scholar 

  • Johnson LE, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann MO Bot Gard 82:149–175

    Google Scholar 

  • Kamemoto H (1963) Chromosome and species relationships in the Vanda alliance. Proceedings of the Fourth World Orchid Conference, Singapore

  • Kamemoto H, Shindo K (1962) Genome relationships in interspecific and intergeneric hybrids of Renanthera. Am J Bot 49:737–748

    Google Scholar 

  • Kelchner SA (2000) The evolution of noncoding chloroplast DNA and its application in plant systematics. Ann MO Bot Gard 87:482–498

    Google Scholar 

  • Kocyan A, Qiu Y-L, Endress PK, Conti E (2004) A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F, and matK sequences. Plant Syst Evol 247:203–213

    Google Scholar 

  • Koehler S, Williams NH, Whitten WM, Maria do Carmo E do Amaral (2002) Phylogeny of the Bifrenaria (Orchidaceae) complex based on morphology and sequence data from nuclear rDNA internal transcribed spacers (ITS) and chloroplast trnL trnF region. Int J Plant Sci 163:1055–1066

    Google Scholar 

  • Mickevich MF, Farris JS (1981) The implications of congruence in Menidia. Syst Zool 30:351–370

    Google Scholar 

  • Moritz C, Hillis DM (1996) Molecular systematics: context and controversies. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, MA, pp 1 –13

    Google Scholar 

  • Olmstead RG, Sweere JA (1995) Combined data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481

    Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Google Scholar 

  • Pridgeon AM, Solano R, Chase MW (2001) Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am J Bot 88:2286–2308

    Google Scholar 

  • Rice R (2004) A new vandoid genus for the Papuasian Orchidaceae. OASIS J 3(Suppl):2–3

    Google Scholar 

  • Ryan A, Whitten WM, Johnson MAT, Chase MW (2000) A phylogenetic assessment of Lycaste and Anguloa (Orchidaceae; Maxillarieae). Lindleyana 15:33–45

    Google Scholar 

  • Salazar GA, Chase MW, Soto Arenas MA, Ingrouille M (2003) Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. Am J Bot 90:777–795

    Google Scholar 

  • Schlechter R (1913) Die Orchidaceen von Deutsch-New-Guinea: Sarcanthinae. Fedde Rep Beih 1:953–1039

    Google Scholar 

  • Schlechter R (1926) Das System der Orchidaceen. Notizbl Bot Garten Mus Berlin-Dahlem 9:563–591

    Google Scholar 

  • Seidenfaden G (1973) Contributions to the orchid flora of Thailand V: Aerides. Bot Tidsskr 68:68–80

    Google Scholar 

  • Seidenfaden G (1975) Orchid genera in Thailand II: Cleisostoma Bl. Dan Bot Ark 29(3):1–79

    Google Scholar 

  • Seidenfaden G (1988) Orchid genera in Thailand XIV: fifty-nine vandoid genera. Opera Bot 95:1–357

    Google Scholar 

  • Senghas K (1988) Eine neue gliederung der subtribus Aeridinae (=Sarcanthinae). Orchidee 39(6):219–223

    Google Scholar 

  • Shindo K, Kamemoto H (1962) Genome relationships of Neofinetia Hu and some allied genera of the Orchidaceae. Cytologia 27:402–409

    Google Scholar 

  • Shindo K, Kamemoto H (1963) Karyotype analysis of some sarcanthine orchids. Am J Bot 50:73–79

    Google Scholar 

  • Smith JJ (1934) Artificial key to the orchid genera of the Netherlands Indies, together with those of New Guinea, the Malay Peninsula and the Philippines. Blume I:194–215

    Google Scholar 

  • Soliva M, Kocyan A, Widmer A (2001) Molecular phylogenetics of the sexually deceptive orchid genus Ophrys (Orchidaceae) based on nuclear and chloroplast DNA sequences. Mol Phylogenet Evol 20:78–88

    Google Scholar 

  • Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic systematics. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematic of plants II, DNA sequencing. Kluwer Academic, Dordrecht, pp 1–42

    Google Scholar 

  • Steele KP, Vilgays R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142

    Google Scholar 

  • Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32

    Google Scholar 

  • Swofford DL (1998) PAUP*4.0b10. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MA

  • Tanaka R, Kamemoto H (1961) Meiotic chromosome behaviour in some intergeneric hybrids of the Vanda alliance. Am J Bot 48:573–582

    Google Scholar 

  • Tanaka R, Kamemoto H (1984) Chromosome in orchids: counting and numbers. In: Arditti J (ed) Orchid biology reviews and perspectives III. Cornell University Press, Ithaca, pp 325–410

    Google Scholar 

  • Tara M, Kamemoto H (1970) Karyotype relationships in the Sarcanthinae (Orchidaceae). Am J Bot 57:176–182

    Google Scholar 

  • Whitten WM, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Am J Bot 87:1842–1856

    Google Scholar 

  • Yukawa T, Kita K, Handa T (2002a) DNA phylogeny and morphological diversification of Australian Dendrobium (Orchidaceae). In: Wilson KL, Morrison DA (eds) Monocots: systematic and evolution. CSIRO, Melbourne, pp 465–471

    Google Scholar 

  • Yukawa T, Miyoshi K, Yokohama J (2002b) Molecular phylogeny and character evolution of Cymbidium (Orchidaceae). Bull Natl Sci Mus Tokyo 28:129–139

    Google Scholar 

  • Zwick DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dedy Darnaedi and Dwi Murti Puspitaningtyas for granting a permit to sample some materials; Pheravut Wongsawad and Haji Nazarudin for guidance during our fieldwork in Thailand and Malaysia; and Koichi Kita, Tomoko Fujimoto, Seishiro Aoki, and Daisuke Yoshimoto for technical assistance. We would like to thank Mark W. Chase and an anonymous reviewer for helpful comments and criticisms on the manuscript. We also thank Kazuhiro Suzuki for skillful cultivation of the plants. This study was partly supported by a Grant-in-Aid for Scientific Research from JSPS (MI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomi Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topik, H., Yukawa, T. & Ito, M. Molecular phylogenetics of subtribe Aeridinae (Orchidaceae): insights from plastid matK and nuclear ribosomal ITS sequences. J Plant Res 118, 271–284 (2005). https://doi.org/10.1007/s10265-005-0217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-005-0217-3

Keywords

Navigation