Skip to main content
Log in

Estimation of covariance functions by a fully data-driven model selection procedure and its application to Kriging spatial interpolation of real rainfall data

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a data-driven model selection approach for the nonparametric estimation of covariance functions under very general moments assumptions on the stochastic process. Observing i.i.d replications of the process at fixed observation points, we select the best estimator among a set of candidates using a penalized least squares estimation procedure with a fully data-driven penalty function, extending the work in Bigot et al. (Electron J Stat 4:822–855, 2010). We then provide a practical application of this estimate for a Kriging interpolation procedure to forecast rainfall data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baraud Y (2000) Model selection for regression on a fixed design. Probab Theory Relat Fields 117(4):467–493

    Article  MATH  MathSciNet  Google Scholar 

  • Bigot J, Biscay R, Loubes J-M, Muñiz-Alvarez L (2010) Nonparametric estimation of covariance functions by model selection. Electron J Stat 4:822–855

    Article  MATH  MathSciNet  Google Scholar 

  • Bigot J, Biscay R, Loubes J-M, Alvarez LM (2011) Group lasso estimation of high-dimensional covariance matrices. J Mach Learn Res 12:3187–3225

    Google Scholar 

  • Biscay R, Lescornel H, Loubes J-M (2012) Adaptive covariance estimation with model selection. Math Methods Stat 21:283–297

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley Series in probability and mathematical statistics: applied probability and statistics. Wiley, New York. Revised reprint of the 1991 edition, A Wiley-Interscience Publication

  • Gendre X (2008) Simultaneous estimation of the mean and the variance in heteroscedastic Gaussian regression. Electron J Stat 2:1345–1372

    Article  MATH  MathSciNet  Google Scholar 

  • Guillot G, Senoussi R, Monestiez P (2000) A positive definite estimator of the non stationary covariance of random fields. In: Monestiez P, Allard D, Froidevaux R (eds) GeoENV2000. Third European conference on geostatistics for environmental applications. Kluwer, Dordrecht

  • Hall P, Fisher N, Hoffmann B (1994) On the nonparametric estimation of covariance functions. Ann Statist 22(4):2115–2134

    Article  MATH  MathSciNet  Google Scholar 

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139

    Google Scholar 

  • Matsuo T, Nychka D, Paul D (2011) Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach. Comput Stat Data Anal 55:2059–2073

    Article  MathSciNet  Google Scholar 

  • Ripley BD (2004) Spatial statistics. Wiley, Hoboken, NJ

    Google Scholar 

  • Sampson PD, Guttorp P (1992) Nonparametric representation of nonstationary spatial covariance structure. J Am Stat Assoc 87:108–119

    Article  Google Scholar 

  • Seber GAF (2008) A matrix handbook for statisticians. Wiley Series in probability and statistics. Wiley-Interscience (Wiley), Hoboken, NJ

  • Shapiro A, Botha JD (1991) Variogram fitting with a general class of conditionally nonnegative definite functions. Comput Stat Data Anal 11:87–96

    Article  MATH  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data. Some theory for kringing. Springer series in statistics, vol xvii, p 247. Springer, New York, NY

  • Petrov VV (1995) Limit theorems of probability theory. Sequences of independent random variables. Oxford studies in probability 4. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York

  • von Bahr B, Esseen CG (1965) Inequalities for the \(r\)th absolute moment of a sum of random variables \(1\le r\le 2\). Ann Math Stat 36:299–303

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Loubes.

Appendix

Appendix

In this section we recall some of the inequalities used in the proof of our results. The next theorem is the Proposition 4.3 given in Bigot et al. (2010), which is a \(k\)-variate extension of the Corollary 5.1 in Baraud (2000) (which is recovered for the particular case \(k=1\)).

Theorem 5

Given \(N,k\in N\) , let \(\widetilde{\mathbf {A}}\in \mathbb {R} ^{Nk\times Nk}\backslash \{0\}\) be a non-negative definite and symmetric matrix, and let \({\varepsilon }_{1},\ldots ,{\varepsilon }_{N}\) be i.i.d random vectors in \(\mathbb {R}^{k}\), with \(\mathbb {E}(\mathbf { \varepsilon }_{1})=\mathbf {0}\) and \(\mathbb {V}({\varepsilon }_{1})= \varvec{\Phi }\). Denote \({\varepsilon }=({\varepsilon } _{1}^{\top },\ldots ,{\varepsilon }_{N}^{\top })^{\top }\), \(\zeta ( {\varepsilon })=\sqrt{{\varepsilon }^{\top }\widetilde{\mathbf { A}}{\varepsilon }}\), and \(\delta _{*}^{2}=\frac{\mathrm {Tr}\left( \widetilde{\mathbf {A}}(\mathbf {I}_{N}\otimes \varvec{\Phi })\right) }{ \mathrm {Tr}\left( \widetilde{\mathbf {A}}\right) }\). Then, for all \(p\ge 2\), such that \(\mathbb {E}\Vert {\varepsilon }_{1}\Vert _{l_{2}}^{p}<\infty \) it holds that for all \(x>0\),

$$\begin{aligned} \mathbb {P}\left( \zeta ({\varepsilon })\ge \delta _{*}^{2} \mathrm {Tr}\left( \widetilde{\mathbf {A}}\right) +2\delta _{*}^{2}\sqrt{ \mathrm {Tr}\left( \widetilde{\mathbf {A}}\right) \rho \left( \widetilde{ \mathbf {A}}\right) x}+\delta _{*}^{2}\rho \left( \widetilde{\mathbf {A}} \right) x\right) \le C(p)\frac{\mathbb {E}\Vert {\varepsilon } _{1}\Vert _{l_{2}}^{p}\mathrm {Tr}\left( \widetilde{\mathbf {A}}\right) }{ \delta _{*}^{p}\rho \left( \widetilde{\mathbf {A}}\right) x^{\frac{p}{2}}} , \end{aligned}$$

where \(\rho \left( \widetilde{\mathbf {A}}\right) \) is the spectral norm of \( \widetilde{\mathbf {A}}\).

The following result is the Corollary 4.2 that appears in Bigot et al. (2010), which constitutes also a natural extension of Corollary 3.1 in Baraud (2000), providing a similar bound as in Gendre (2008).

Theorem 6

Let \(q>0\) be given such that there exists \(p>2(1+q)\) satisfying \( \mathbb {E}\Vert \varepsilon _{i}\Vert _{l_{2}}^{p}<\infty \). Then, for some constants \(K(\theta )>1\) we have that

$$\begin{aligned} \left( \mathbb {E}\Vert \mathbf {f}-\widetilde{\mathbf {f}}\Vert _{N}^{2q}\right) ^{\frac{1}{q}}\le 2^{\left( \frac{1}{q}-1\right) _{+}} \left[ K(\theta )\inf _{m\in \mathcal {M}}\left( \Vert \mathbf {f}-\mathbf {P} _{m}\mathbf {f}\Vert _{N}^{2}+\frac{\delta _{m}^{2}D_{m}}{N}\right) +\frac{ \Delta _{p}}{N}\delta _{sup}^{2}\right] , \end{aligned}$$

where

$$\begin{aligned} \Delta _{p}^{q}=C(p,q,\theta )\mathbb {E}\Vert {\varepsilon }_{i}\Vert _{l_{2}}^{p}\left( \sum _{m\in \mathcal {M}}\delta _{m}^{-p}D_{m}^{-\left( \frac{p}{2}-1-q\right) }\right) . \end{aligned}$$

Proposition 7

(Hermite Hadamard’s Inequality) For all convex functions \( f\!:\![a,b]\!\rightarrow \! \mathbb {R}\) is known that:

$$\begin{aligned} f\left( \frac{a+b}{2}\right) \le \frac{1}{b-a}\int \limits _{a}^{b}f(x)dx\le \frac{ f(a)+f(b)}{2}. \end{aligned}$$

Now we recall two moment inequalities for sum of independent centered random variables, which are repeatedly used throughout this paper.

Theorem 8

(Rosenthal’s Inequality) Let \(U_{1},U_{2},\ldots U_{n}\) be independent centered random variables with values in \(\mathbb {R}\). Then for any \(p\ge 2\) we have:

$$\begin{aligned} \mathbb {E}\left[ \left| \sum _{i=1}^{n}U_{i}\right| ^{p}\right] \le C(p)\left( \sum _{i=1}^{n}\mathbb {E}[|U_{i}|^{p}]+\left( \sum _{i=1}^{n} \mathbb {E}[U_{i}^{2}]\right) ^{\frac{p}{2}}\right) . \end{aligned}$$

For the proof of this inequality, we refer to Petrov (1995). The next result explores the case where \(p\in [1,2]\). To our knowledge the result is due to Bahr and Esseen (1965).

Theorem 9

Let \(U_{1},U_{2},\ldots ,U_{n}\) be independent centered random variables with values \(\mathbb {R}\). For any \(p\) with \(p\in [1,2]\) it holds that:

$$\begin{aligned} \mathbb {E}\left[ \left| \sum _{i=1}^{n}U_{i}\right| ^{p}\right] \le 8\sum _{i=1}^{n}\mathbb {E}[|U_{i}|^{p}]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biscay Lirio, R., Camejo, D.G., Loubes, JM. et al. Estimation of covariance functions by a fully data-driven model selection procedure and its application to Kriging spatial interpolation of real rainfall data. Stat Methods Appl 23, 149–174 (2014). https://doi.org/10.1007/s10260-013-0250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-013-0250-7

Keywords

Mathematics Subject Classification (2000)

Navigation