Skip to main content
Log in

Elevated circulating CD14lowCD16+ monocyte subset in primary biliary cirrhosis correlates with liver injury and promotes Th1 polarization

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Primary biliary cirrhosis (PBC) is a progressive autoimmune liver disease in which monocytes/macrophages infiltration and skewed T helper type (Th) 1 and Th17 cell responses participate in the development of the disease. Human peripheral blood monocytes are heterogeneous and can be divided into classical CD14highCD16, intermediate CD14highCD16+, and nonclassical CD14lowCD16+ monocyte subsets. Compared to classical monocytes, CD16+ monocytes are generally termed pro-inflammatory monocytes and play an important pathogenic role in autoimmune diseases. However, little is known about the immunophenotype and immunopathogenic role of peripheral blood CD16+ monocytes in PBC. Thus, we investigated the phenotype and function of these circulating monocyte subsets from PBC patients. The frequencies of circulating CD14highCD16+ and CD14lowCD16+ subpopulation were increased in disease compared with healthy controls. Among them, CD14lowCD16+ monocyte subset positively correlated with disease progress, liver damage indicators and serum C-reactive protein, respectively. Furthermore, the frequencies of Th1 and Th17 cells were upregulated and CD14lowCD16+ monocyte subset was also positively associated with Th1 cell frequency in PBC. Using a vitro coculture model, we further found that CD14lowCD16+ monocytes promoted Th1 cell polarization compared to classical monocytes. Interleukin-12 (IL-12) and direct contact of patient CD4+T cell and CD14lowCD16+ monocytes, were responsible for CD14lowCD16+ monocytes promotion of Th1 cells polarization in PBC. Our study demonstrated that the enhanced CD14lowCD16+ monocyte subset participated in fostering liver damage and inflammatory responses, and promoted Th1 cells skewing in PBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PBC:

Primary biliary cirrhosis

ADA:

Adenosine deaminase

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

ALP:

Alkaline phosphatase

GGT:

γ-Glutamyltranspeptidase

TBIL:

Total bilirubin

CRP:

C-reactive protein

Th:

T helper type

RA:

Rheumatoid arthritis

ITP:

Idiopathic thrombocytopenic purpura

CHB:

Chronic hepatitis B

HC:

Healthy control

AMA:

Anti-mitochondrial antibodies

PBMCs:

Peripheral blood mononuclear cells

IL-12:

Interleukin-12

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  1. Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74–80.

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler-Heitbrock L. The CD14 + CD16 + blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–92.

    Article  CAS  PubMed  Google Scholar 

  3. Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–31.

    Article  CAS  PubMed  Google Scholar 

  4. Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14 + CD16 + DR ++ monocytes are a major source of TNF. J Immunol. 2002;168:3536–42.

    Article  CAS  PubMed  Google Scholar 

  5. Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14 ++CD16 + monocytes as a third monocyte subset. Blood. 2011;118:e50–61.

    Article  CAS  PubMed  Google Scholar 

  6. Anbazhagan K, Duroux-Richard I, Jorgensen C, et al. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. Int Rev Immunol. 2014;33:470–89.

    Article  CAS  PubMed  Google Scholar 

  7. Seidler S, Zimmermann HW, Weiskirchen R, et al. Elevated circulating soluble interleukin-2 receptor in patients with chronic liver diseases is associated with non-classical monocytes. BMC Gastroenterol. 2012;12:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fingerle G, Pforte A, Passlick B, et al. The novel subset of CD14 +/CD16 + blood monocytes is expanded in sepsis patients. Blood. 1993;82:3170–6.

    CAS  PubMed  Google Scholar 

  9. Shalova IN, Kajiji T, Lim JY, et al. CD16 regulates TRIF-dependent TLR4 response in human monocytes and their subsets. J Immunol. 2012;188:3584–93.

    Article  CAS  PubMed  Google Scholar 

  10. Ancuta P, Kunstman KJ, Autissier P, et al. CD16 + monocytes exposed to HIV promote highly efficient viral replication upon differentiation into macrophages and interaction with T cells. Virology. 2006;344:267–76.

    Article  CAS  PubMed  Google Scholar 

  11. Williams DW, Byrd D, Rubin LH, et al. CCR2 on CD14(+)CD16(+) monocytes is a biomarker of HIV-associated neurocognitive disorders. Neurol Neuroimmunol Neuroinflamm. 2014;1:e36.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rossol M, Kraus S, Pierer M, et al. The CD14(bright) CD16 + monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum. 2012;64:671–7.

    Article  CAS  PubMed  Google Scholar 

  13. Zhong H, Bao W, Li X, et al. CD16 + monocytes control T-cell subset development in immune thrombocytopenia. Blood. 2012;120:3326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grip O, Bredberg A, Lindgren S, et al. Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn’s disease. Inflamm Bowel Dis. 2007;13:566–72.

    Article  PubMed  Google Scholar 

  15. Selmi C, Lleo A, Pasini S, et al. Innate immunity and primary biliary cirrhosis. Curr Mol Med. 2009;9:45–51.

    Article  CAS  PubMed  Google Scholar 

  16. Harada K, Shimoda S, Sato Y, et al. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol. 2009;157:261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang CY, Ma X, Tsuneyama K, et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology. 2014;59:1944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rong G, Zhou Y, Xiong Y, et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol. 2009;156:217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Serbina NV, Jia T, Hohl TM, et al. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans HG, Gullick NJ, Kelly S, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci USA. 2009;106:6232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang JY, Zou ZS, Huang A, et al. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B. PLoS ONE. 2011;6:e17484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allina J, Stanca CM, Garber J, et al. Anti-CD16 autoantibodies and delayed phagocytosis of apoptotic cells in primary biliary cirrhosis. J Autoimmun. 2008;30:238–45.

    Article  CAS  PubMed  Google Scholar 

  23. Zimmermann HW, Seidler S, Nattermann J, et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS ONE. 2010;5:e11049.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blom L, Poulsen LK. IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures. J Immunol. 2012;189:4331–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda A, Aoki N, Kido M, et al. Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology. 2014;60:224–36.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez E, Rodrigo L, Riestra S, et al. Adenosine deaminase isoenzymes and neopterin in liver cirrhosis. J Clin Gastroenterol. 2000;30:181–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi F, Ikeda T, Marumo F, et al. Adenosine deaminase isoenzymes in liver disease. Am J Gastroenterol. 1993;88:266–71.

    CAS  PubMed  Google Scholar 

  28. Sanchez RA, Hueso PJ, Rico SJ, et al. Enzymatic activity of serum adenosine deaminase in different liver disorders. An Med Interna. 1989;6:300–4.

    Google Scholar 

  29. Nilius R, Neef L, Rath FW, et al. Adenosine deaminase activity—an indicator of inflammation in liver disease. Dtsch Z Verdau Stoffwechselkr. 1987;47:224–9.

    CAS  PubMed  Google Scholar 

  30. Alempijevic T, Krstic M, Jesic R, et al. Biochemical markers for non-invasive assessment of disease stage in patients with primary biliary cirrhosis. World J Gastroenterol. 2009;15:591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sapey T, Mendler MH, Guyader D, et al. Respective value of alkaline phosphatase, gamma-glutamyl transpeptidase and 5′ nucleotidase serum activity in the diagnosis of cholestasis: a prospective study of 80 patients. J Clin Gastroenterol. 2000;30:259–63.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki N, Irie M, Iwata K, et al. Altered expression of alkaline phosphatase (ALP) in the liver of primary biliary cirrhosis (PBC) patients. Hepatol Res. 2006;35:37–44.

    Article  CAS  PubMed  Google Scholar 

  33. Lammers WJ, van Buuren HR, Hirschfield GM, et al. Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study. Gastroenterology. 2014;147(1338–1349):e15.

    Google Scholar 

  34. Lammers WJ, Kowdley KV, van Buuren HR, et al. Predicting outcome in primary biliary cirrhosis. Ann Hepatol. 2014;13:316–26.

    PubMed  Google Scholar 

  35. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111:1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong KL, Yeap WH, Tai JJ, et al. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53:41–57.

    Article  CAS  PubMed  Google Scholar 

  37. Evans HG, Suddason T, Jackson I, et al. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci USA. 2007;104:17034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation project of China (81303287) and funded by Guangdong Province Medical Research Foundation project (A2013236).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qubo Chen or Junhua Zhuang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in connection with this study.

Additional information

Anping Peng and Peifeng Ke have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, A., Ke, P., Zhao, R. et al. Elevated circulating CD14lowCD16+ monocyte subset in primary biliary cirrhosis correlates with liver injury and promotes Th1 polarization. Clin Exp Med 16, 511–521 (2016). https://doi.org/10.1007/s10238-015-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0381-2

Keywords

Navigation