Skip to main content

Advertisement

Log in

Potential survival markers in cancer patients undergoing chemotherapy

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Due to the importance of the identification of chemotherapy outcome prognostic factors, we attempted to establish the potential of oxidative stress/DNA damage parameters such as prognostic markers. The aim of the study was to determine whether platinum derivative-based chemotherapy in cancer patients (n = 66) is responsible for systemic oxidatively damaged DNA and whether damage biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) and the modified base 8-oxo-7,8-dihydroguanine (8-oxo-Gua), in urine and DNA may be used as a prognostic factor for the outcome of chemotherapy. All the aforementioned modifications were analyzed using techniques involving high-performance liquid chromatography/electrochemical detection (HPLC/EC) or HPLC/gas chromatography–mass spectrometry (GC–MS). Among all the analyzed parameters, the significantly decreased levels of 8-oxo-Gua in urine collected from a subgroup of patients 24 h after the first infusion of the drug, as compared with the baseline levels, correlated with a significantly longer overall survival (OS) (60 months after therapy) than in the subgroup without any decrease of this parameter after therapy (median OS = 24 months, p = 0.007). Moreover, a significantly longer OS was also observed in a group with increased urine levels of 8-oxo-dG after chemotherapy (38.6 vs. 20.5 months, p = 0.03). The results of our study suggest that patients with decreased 8-oxo-Gua levels and increased 8-oxo-dG levels in urine 24 h after the first dose should be considered as better responders to the administered chemotherapy, with a lower risk of death. The conclusion may permit the use of these parameters as markers for predicting the clinical outcome of platinum derivative-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett. 2012;327:26–47.

    Article  CAS  PubMed  Google Scholar 

  2. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313:17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cho WC, Kwan CK, Yau S, So PP, Poon PC, Au JS. The role of inflammation in the pathogenesis of lung cancer. Expert Opin Ther Targets. 2011;15:1127–37.

    Article  CAS  PubMed  Google Scholar 

  4. Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal. 2011;14:289–331.

    Article  CAS  PubMed  Google Scholar 

  5. Cunningham RP. DNA repair: caretakers of the genome? Curr Biol. 1997;7:576–9.

    Article  Google Scholar 

  6. Xu DD, Lam HM, Hoeven R, Xu CB, Leung AW, Cho WC. Photodynamic therapy induced cell death of hormone insensitive prostate cancer PC-3 cells with autophagic characteristics. Photodiagnosis Photodyn Ther. 2013;10:278–87.

    Article  CAS  PubMed  Google Scholar 

  7. Cooke MS, Olinski R, Evans MD. Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta. 2006;365:30–49.

    Article  CAS  PubMed  Google Scholar 

  8. Noelker C, Hampel H, Dodel R. Blood-based protein biomarkers for diagnosis and classification of neurodegenerative diseases: current progress and clinical potential. Mol Diagn Ther. 2011;15:83–102.

    Article  CAS  PubMed  Google Scholar 

  9. Roszkowski K, Jozwicki W, Blaszczyk P, Mucha-Malecka A, Siomek A. Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med Sci Monit. 2011;17:329–33.

    Article  Google Scholar 

  10. Li N, Tan W, Li J, Li P, Lee S, Wang Y, et al. Glucose metabolism in breast cancer and its implication in cancer therapy. Int J Clin Med. 2011;2:110–28.

    Article  CAS  Google Scholar 

  11. Cho WC. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer. 2007;6:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sinhk SK, Szulik MW, Ganguly M, Khutsishvili I, Stone MP, Marky LA, et al. Characterization of DNA with an 8-oxoguanine modification. Nucleic Acids Res. 2011;39:6789–801.

    Article  Google Scholar 

  13. Cooke MS, Evans MD, Dove R, Rozalski R, Gackowski D, Siomek A, Lunec J, Olinski R. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutat Res. 2005;574:58–66.

    Article  CAS  PubMed  Google Scholar 

  14. Evans MD, Saparbaev M, Cooke MS. DNA repair and the origins of urinary oxidized 2′-deoxyribonucleosides. Mutagenesis. 2010;25:433–42.

    Article  CAS  PubMed  Google Scholar 

  15. Havelka AM, Berndtsson M, Olofsson MH, Shoshan MC, Linder S. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: Is acute apoptosis an “off-target” effect? Mini Rev Med Chem. 2007;7:1035–9.

    Article  CAS  PubMed  Google Scholar 

  16. Goncalves MS, Silveira AF, Teixeira AR, Hyppolito MA. Mechanisms of cisplatin ototoxicity: theoretical review. J Laryngol Otol. 2013;7:1–6.

    Google Scholar 

  17. Weijl NI, Hopman GD, Wipkink-Bakker A, Lentjes EG, Berger HM, Cleton FJ, et al. Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann Oncol. 1998;9:1331–7.

    Article  CAS  PubMed  Google Scholar 

  18. Roszkowski K, Olinski R. Urinary 8-oxoguanine as a predictor of survival in patients undergoing radiotherapy. Cancer Epidemiol Biomarkers Prev. 2012;21:629–34.

    Article  CAS  PubMed  Google Scholar 

  19. Siomek A, Tujakowski J, Gackowski D, Rozalski R, Foksinski M, Dziaman T, et al. Severe oxidatively damaged DNA after cisplatin treatment of cancer patients. Int J Cancer. 2006;119:2228–30.

    Article  CAS  PubMed  Google Scholar 

  20. Ravanat JL, Guicherd P, Tuce Z, Cadet J. Simultaneous determination of five oxidative DNA lesions in human urine. Chem Res Toxicol. 1999;12:802–8.

    Article  CAS  PubMed  Google Scholar 

  21. Siomek A, Gackowski D, Rozalski R, Dziaman T, Szpila A, Guz J, et al. Higher leukocyte 8-oxo-7,8-dihydro-2-deoxyguanosine and lower plasma ascorbate in aging humans? Antioxid Redox Signal. 2007;9:143–50.

    Article  CAS  PubMed  Google Scholar 

  22. Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, et al. Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med. 2004;37(9):1449–54.

    Article  CAS  PubMed  Google Scholar 

  23. Poulsen HE, Loft S, Prieme H, Vistisen K, Lykkesfeldt J, Nyyssonen K, et al. Oxidative DNA damage in vivo: relationship to age, plasma antioxidants, drug metabolism, glutathione-S-transferase activity and urinary creatinine excretion. Free Rad Res. 1998;29(6):565–71.

    Article  CAS  Google Scholar 

  24. Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, et al. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer. 2004;40:1713–23.

    Article  CAS  PubMed  Google Scholar 

  25. Zamble DB, Lippard SJ. Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci. 1995;20:435–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kyrtopoulos SA. Variability in DNA repair and individual susceptibility to genotoxins. Clin Chem. 1995;41:1848–53.

    CAS  PubMed  Google Scholar 

  27. Strauss B, Hanawalt P, Swenberg J. Risk assessment in environmental carcinogenesis. An American Association for Cancer Research special conference in cancer research cosponsored by the Environmental Mutagen Society. Cancer Res. 1994;54:5493–6.

    CAS  PubMed  Google Scholar 

  28. Sherman-Baust CA, Becker KG, Wood Iii WH, Zhang Y, Morin PJ. Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovarian Res. 2011;4(1):21. doi:10.1186/1757-2215-4-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srivastava AN, Gupta A, Srivastava S, Natu SM, Mittal B, Negi MP, Prasad R. Cisplatin combination chemotherapy induces oxidative stress in advance non small cell lung cancer patients. Asian Pac J Cancer Prev. 2010;11(2):465–71.

    PubMed  Google Scholar 

  30. Dziaman T, Banaszkiewicz Z, Roszkowski K, Gackowski D, Wisniewska E, Rozalski R, et al. 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients. Int J Cancer. 2013;134:376–83.

    Article  CAS  PubMed  Google Scholar 

  31. Loft S, Danielsen P, Lohr M, Jantzen K, Hemmingsen JG, Roursgaard M, et al. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA. Arch Biochem Biophys. 2012;518:142–50.

    Article  CAS  PubMed  Google Scholar 

  32. Kuznetsov NA, Koval VV, Fedorova OS. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1. Biochemistry (Mosc). 2011;76:118–30.

    Article  CAS  Google Scholar 

  33. Afzal S, Jensen SA, Sorensen JB, Henriksen T, Weimann A, Poulsen HE. Oxidative damage to guanine nucleosides following combination chemotherapy with 5-fluorouracil and oxaliplatin. Cancer Chemother Pharmacol. 2012;69:301–7.

    Article  CAS  PubMed  Google Scholar 

  34. Erhola M, Toyokuni S, Okada K, Tanaka T, Hiai H, Ochi H, et al. Biomarker evidence of DNA oxidation in lung cancer patients: association of urinary 8-hydroxy-2′-deoxyguanosine excretion with radiotherapy, chemotherapy, and response to treatment. FEBS Lett. 1997;409:287–91.

    Article  CAS  PubMed  Google Scholar 

  35. Poulsen HE, Nadal LL, Broedbaek K, Nielsen PE, Weimann A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim Biophys Acta. 2014;1840:801–8.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta A, Srivastava S, Prasad R, Natu SM, Mittal B, Negi MP, et al. Oxidative stress in non-small cell lung cancer patients after chemotherapy: association with treatment response. Respirology. 2010;15:349–56.

    Article  PubMed  Google Scholar 

  37. Li X, Xu H, Xu C, Lin M, Song X, Yi F, et al. The yin-yang of DNA damage response: roles in tumorigenesis and cellular senescence. Int J Mol Sci. 2013;14:2431–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salehan MR, Morse HR. DNA damage repair and tolerance: a role in chemotherapeutic drug resistance. Br J Biomed Sci. 2013;70:31–40.

    CAS  PubMed  Google Scholar 

  39. Collins AR, Cadet J, Moller L, Poulsen HE, Vina J. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys. 2004;423:57–65.

    Article  CAS  PubMed  Google Scholar 

  40. Siomek A, Gackowski D, Rozalski R, Dziaman T, Szpila A, Guz J, et al. Higher leukocyte 8-oxo-7,8-dihydro-2′-deoxyguanosine and lower plasma ascorbate in aging humans? Antioxid Redox Signal. 2007;9:143–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Professor Ryszard Olinski, Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, PL for the inspiration to perform this work and his making possible laboratory investigations. I would like to acknowledge the contributions of Rafal Rozalski and Daniel Gackowski to this study.

Conflicts of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Roszkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roszkowski, K., Filipiak, J., Wisniewska, M. et al. Potential survival markers in cancer patients undergoing chemotherapy. Clin Exp Med 15, 381–387 (2015). https://doi.org/10.1007/s10238-014-0313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0313-6

Keywords

Navigation