Skip to main content

Advertisement

Log in

In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Myeloid leukemic cells can be induced to differentiate into leukemia-derived dendritic cells (DCleu) regaining the stimulatory capacity of professional DCs while presenting the leukemic antigen repertoire. But so far, the induced antileukemic T-cell responses are variable both in specificity and in efficacy. In an attempt to elucidate the underlying causes of different T-cell response patterns, T-cell receptor (TR) Vβ chain rearrangements were correlated with the T cells corresponding immunophenotypic profile, as well as their proliferative response and cytolytic capacities. In three different settings, donor T cells, either human leukocyte antigen matched or mismatched (haploidentical), or autologous T cells were repeatedly stimulated with myeloid blasts or leukemia-derived DC/DCleus from the corresponding patients diseased from acute myeloid leukemia (AML). Although no significant differences in T-cell proliferation were observed, the T-cell-mediated cytolytic response pattern varied considerably and even caused blast proliferation in two cases. Spectratyping revealed a remarkable restriction (>75 % of normal level) of the CD4+ or CD8+-TR repertoire of blast- or DC/DCleu-stimulated T cells. Although in absolute terms, DC/DCleu stimulation induced the highest grade of restriction in the CD8+ T-cell subset, the CD4+ T-cell compartment seemed to be relatively more affected. But most importantly, in vitro stimulation with DC/DCleu resulted into an identical TR restriction pattern (β chain) that could be identified in vivo in a patient sample 3 months after allo-SCT. Thus, in vitro tests combining functional flow cytometry with spectratyping might provide predictive information about T cellular response patterns in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giles FJ, Keating A, Goldstone AH, Avivi I, Willman CL, Kantarjian HM (2002) Acute myeloid leukemia. Hematol Am Soc Hematol Educ Program 73–110

  2. Buchner T, Hiddemann W, Berdel WE, Wormann B, Schoch C, Fonatsch C, Loffler H, Haferlach T, Ludwig WD, Maschmeyer G, Staib P, Aul C, Gruneisen A, Lengfelder E, Frickhofen N, Kern W, Serve HL, Mesters RM, Sauerland MC, Heinecke A (2003) 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML cooperative group. J Clin Oncol 21(24):4496–4504. doi:10.1200/JCO.2003.02.133

    Google Scholar 

  3. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ (2004) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103(3):767–776. doi:10.1182/blood-2003-02-0342

    Article  PubMed  CAS  Google Scholar 

  4. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76(12):2462–2465

    PubMed  CAS  Google Scholar 

  5. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D, van Rhee F, Mittermueller J, de Witte T, Holler E, Ansari H (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86(5):2041–2050

    PubMed  CAS  Google Scholar 

  6. Schmid C, Schleuning M, Schwerdtfeger R, Hertenstein B, Mischak-Weissinger E, Bunjes D, Harsdorf SV, Scheid C, Holtick U, Greinix H, Keil F, Schneider B, Sandherr M, Bug G, Tischer J, Ledderose G, Hallek M, Hiddemann W, Kolb HJ (2006) Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 108(3):1092–1099. doi:10.1182/blood-2005-10-4165

    Article  PubMed  CAS  Google Scholar 

  7. Karp SE, Farber A, Salo JC, Hwu P, Jaffe G, Asher AL, Shiloni E, Restifo NP, Mule JJ, Rosenberg SA (1993) Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not tumor necrosis factor. J Immunol 150(3):896–908

    PubMed  CAS  Google Scholar 

  8. Brossart P (2002) Dendritic cells in vaccination therapies of malignant diseases. Transfus Apher Sci 27(2):183–186

    Article  PubMed  Google Scholar 

  9. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9(1):10–16

    Article  PubMed  CAS  Google Scholar 

  10. Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7(7):761–765. doi:10.1038/89863

    Article  PubMed  CAS  Google Scholar 

  11. Claxton DF, McMannis J, Champlin R, Choudhury A (2001) Therapeutic potential of leukemia-derived dendritic cells: preclinical and clinical progress. Crit Rev Immunol 21(1–3):147–155

    PubMed  CAS  Google Scholar 

  12. Stripecke R, Levine AM, Pullarkat V, Cardoso AA (2002) Immunotherapy with acute leukemia cells modified into antigen-presenting cells: ex vivo culture and gene transfer methods. Leukemia 16(10):1974–1983. doi:10.1038/sj.leu.2402701

    Article  PubMed  CAS  Google Scholar 

  13. Caux C, Massacrier C, Vanbervliet B, Dubois B, de Saint-Vis B, Dezutter-Dambuyant C, Jacquet C, Schmitt D, Banchereau J (1997) CD34 + hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF + TNF alpha. Adv Exp Med Biol 417:21–25

    PubMed  CAS  Google Scholar 

  14. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF (1999) Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93(3):780–786

    PubMed  CAS  Google Scholar 

  15. Lee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, Da Silva I, Somersan S, Thomas EK, Bhardwaj N (2002) A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20(suppl 4):A8–A22

    Article  PubMed  CAS  Google Scholar 

  16. Houtenbos I, Westers TM, Stam AG, de Gruijl TD, Scheper RJ, Ossenkoppele GJ, van de Loosdrecht AA (2003) Serum-free generation of antigen presenting cells from acute myeloid leukaemic blasts for active specific immunisation. Cancer Immunol Immunother 52(7):455–462. doi:10.1007/s00262-003-0389-4

    Article  PubMed  Google Scholar 

  17. Westers TM, Stam AG, Scheper RJ, Regelink JC, Nieuwint AW, Schuurhuis GJ, van de Loosdrecht AA, Ossenkoppele GJ (2003) Rapid generation of antigen-presenting cells from leukaemic blasts in acute myeloid leukaemia. Cancer Immunol Immunother 52(1):17–27. doi:10.1007/s00262-002-0316-0

    PubMed  CAS  Google Scholar 

  18. Sato M, Takayama T, Tanaka H, Konishi J, Suzuki T, Kaiga T, Tahara H (2003) Generation of mature dendritic cells fully capable of T helper type 1 polarization using OK-432 combined with prostaglandin E(2). Cancer Sci 94(12):1091–1098

    Article  PubMed  CAS  Google Scholar 

  19. Kufner S, Fleischer RP, Kroell T, Schmid C, Zitzelsberger H, Salih H, de Valle F, Treder W, Schmetzer HM (2005) Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes. Cancer Immunol Immunother 54(10):953–970. doi:10.1007/s00262-004-0657-y

    Article  PubMed  CAS  Google Scholar 

  20. Kremser A, Dressig J, Grabrucker C, Liepert A, Kroell T, Scholl N, Schmid C, Tischer J, Kufner S, Salih H, Kolb HJ, Schmetzer H (2010) Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother 33(2):185–199. doi:10.1097/CJI.0b013e3181b8f4ce

    Article  PubMed  Google Scholar 

  21. Dreyssig J, Kremser A, Liepert A, Grabrucker C, Freudenreich M, Schmid C, Kroell T, Scholl N, Tischer J, Kufner S, Salih H, Kolb HJ, Schmetzer HM (2011) Various ‘dendritic cell antigens’ are already expressed on uncultured blasts in acute myeloid leukemia and myelodysplastic syndromes. Immunotherapy 3(9):1113–1124. doi:10.2217/imt.11.108

    Article  PubMed  CAS  Google Scholar 

  22. Schmetzer HM, Kremser A, Loibl J, Kroell T, Kolb HJ (2007) Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo. Leukemia 21(6):1338–1341. doi:10.1038/sj.leu.2404639

    Article  PubMed  CAS  Google Scholar 

  23. Grabrucker C, Liepert A, Dreyig J, Kremser A, Kroell T, Freudenreich M, Schmid C, Schweiger C, Tischer J, Kolb HJ, Schmetzer H (2010) The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. J Immunother 33(5):523–537. doi:10.1097/CJI.0b013e3181d87ffd

    Article  PubMed  CAS  Google Scholar 

  24. Liepert A, Grabrucker C, Kremser A, Dreyssig J, Ansprenger C, Freudenreich M, Kroell T, Reibke R, Tischer J, Schweiger C, Schmid C, Kolb HJ, Schmetzer H (2010) Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Cell Immunol 265(1):23–30. doi:10.1016/j.cellimm.2010.06.009

    Article  PubMed  CAS  Google Scholar 

  25. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951. doi:10.1182/blood-2009-03-209262

    Article  PubMed  CAS  Google Scholar 

  26. Mitelman F (ed) (1995) ISCN 1995 guidelines for cancer cytogenetics, supplement to: an international system for human cytogenetic nomenclature. S Karger, Basel, Switzerland

    Google Scholar 

  27. Schuster FR, Buhmann R, Reuther S, Hubner B, Grabrucker C, Liepert A, Reibke R, Lichtner P, Yang T, Kroell T, Kolb HJ, Borkhardt A, Schmetzer H (2008) Improved effector function of leukemia-specific T-lymphocyte clones trained with AML-derived dendritic cells. Cancer Genomics Proteomics 5(5):275–286

    PubMed  CAS  Google Scholar 

  28. Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2(12):982–987. doi:10.1038/nri959

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen XD, Eichler H, Dugrillon A, Piechaczek C, Braun M, Kluter H (2003) Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells. J Immunol Methods 275(1–2):57–68

    Article  PubMed  CAS  Google Scholar 

  30. Kienzle N, Olver S, Buttigieg K, Kelso A (2002) The fluorolysis assay, a highly sensitive method for measuring the cytolytic activity of T cells at very low numbers. J Immunol Methods 267(2):99–108

    Article  PubMed  CAS  Google Scholar 

  31. Kufner S, Zitzelsberger H, Kroell T, Pelka-Fleischer R, Salem A, de Valle F, Schweiger C, Nuessler V, Schmid C, Kolb HJ, Schmetzer HM (2005) Leukemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with acute myeloid leukaemia: a methodological approach under serum-free culture conditions. Scand J Immunol 62(1):86–98. doi:10.1111/j.1365-3083.2005.01630.x

    Article  PubMed  CAS  Google Scholar 

  32. Monteiro J, Hingorani R, Peroglizzi R, Apatoff B, Gregersen PK (1996) Oligoclonality of CD8 + T cells in multiple sclerosis. Autoimmunity 23(2):127–138

    Article  PubMed  CAS  Google Scholar 

  33. Puisieux I, Even J, Pannetier C, Jotereau F, Favrot M, Kourilsky P (1994) Oligoclonality of tumor-infiltrating lymphocytes from human melanomas. J Immunol 153(6):2807–2818

    PubMed  CAS  Google Scholar 

  34. Lu J, Basu A, Melenhorst JJ, Young NS, Brown KE (2004) Analysis of T-cell repertoire in hepatitis-associated aplastic anemia. Blood 103(12):4588–4593

    Article  PubMed  CAS  Google Scholar 

  35. Currier JR, Robinson MA (2001) Spectratype/immunoscope analysis of the expressed TCR repertoire. Curr Protoc Immunol Chapter 10 Unit 10 28. doi:10.1002/0471142735.im1028s38

  36. Currier JR, Stevenson KS, Kehn PJ, Zheng K, Hirsch VM, Robinson MA (1999) Contributions of CD4 + , CD8 + , and CD4 + CD8 + T cells to skewing within the peripheral T cell receptor beta chain repertoire of healthy macaques. Hum Immunol 60(3):209–222. doi:org/10.1016/S0198-8859(98)00109-8

    Article  PubMed  CAS  Google Scholar 

  37. Schmetzer H, Liepert A, Grabrucker C, Kremser A, Loibl J, Schmid C, Buhmann R, Yang T, Kroell T, Treder W, Kolb H (2007) Role of the quality and quantity of leukemia-derived dedritic cells and anti-leukemia-directed T cells to predict the course and success of immunotherapy. Bone Marrow Transpl 39(1):O302

    Google Scholar 

  38. Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, Barrett AJ (2000) Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 343(11):750–758

    Article  PubMed  CAS  Google Scholar 

  39. Childs RW (2000) Nonmyeloablative allogeneic peripheral blood stem-cell transplantation as immunotherapy for malignant diseases. Cancer J 6(3):179–187

    PubMed  CAS  Google Scholar 

  40. Giralt S, Hester J, Huh Y, Hirsch-Ginsberg C, Rondon G, Seong D, Lee M, Gajewski J, Van Besien K, Khouri I, Mehra R, Przepiorka D, Korbling M, Talpaz M, Kantarjian H, Fischer H, Deisseroth A, Champlin R (1995) CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 86(11):4337–4343

    PubMed  CAS  Google Scholar 

  41. Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ, Ritz J (2002) Infusion of CD4 + donor lymphocytes induces the expansion of CD8 + donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res 8(7):2052–2060

    PubMed  CAS  Google Scholar 

  42. Chess L, Jiang H (2004) Resurrecting CD8 + suppressor T cells. Nat Immunol 5(5):469–471. doi:10.1038/ni0504-469ni0504-469

    Article  PubMed  CAS  Google Scholar 

  43. Jiang H, Chess L (2006) Regulation of immune responses by T cells. N Engl J Med 354(11):1166–1176. doi:10.1056/NEJMra055446

    Article  PubMed  CAS  Google Scholar 

  44. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA (2009) Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19(10):1817–1824. doi:10.1101/gr.092924.109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Deutsche Forschungsgesellschaft (SFB/TR 36) to Hans-Jochem Kolb, Susanne Reuther and Arndt Borkhardt; R. Buhmann was supported by grants of the EU (Stemdiagnostics/LSHB-CT-2007037703). We are indebted to many nurses and physicians for their unconditional assistance in patient care, referral of patient material and data collection. For extended bioinformatic assistance, we are cordially indebted to Jens Stoye and Nils Hoffmann. Parts of the results presented in this manuscript were worked out in the doctoral thesis of Susanne Reuther.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymund Buhmann.

Additional information

Susanne Reuther, Helga Schmetzer, Friedhelm R. Schuster contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuther, S., Schmetzer, H., Schuster, F.R. et al. In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clin Exp Med 13, 29–48 (2013). https://doi.org/10.1007/s10238-012-0180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-012-0180-y

Keywords

Navigation