Skip to main content
Log in

Towards the understanding of cytoskeleton fluidisation–solidification regulation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The understanding of the self-regulation of the mechanical properties in non-sarcomeric cells, such as lung cells or cells during tissue development, remains an open research problem with many unresolved issues. Their behaviour is far from the image of the traditionally studied sarcomeric cells, since the crosstalk between the signalling pathways and the complexity of the mechanical properties creates an intriguing mechano-chemical coupling. In these situations, the inelastic effects dominate the cytoskeletal structure showing phenomena like fluidisation and subsequent solidification. Here, we proposes the inelastic contractile unit framework as an attempt to reconciles these effects. The model comprises a mechanical description of the nonlinear elasticity of the cytoskeleton incorporated into a continuum-mechanics framework using the eighth-chains model. In order to address the inelastic effect, we incorporate the dynamic of crosslinks, considering the \(\alpha \)-actinin and the active stress induced by the myosin molecular motors. Finally, we introduce a hypothesis that links the ability to fluidise and re-solidify as a consequence of the interaction between the active stress and the gelation state defined by the crosslinks. We validate the model with data obtained from experiments of drug-induced relaxation reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An S, Fabry B, Trepat X, Wang N, Fredberg J (2006) Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness? Am J Respir Cell Mol Biol 35(1):55–64

    Article  Google Scholar 

  • Bausch AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nat Phys 2(4):231–238

    Article  Google Scholar 

  • Bendix P, Koenderink G, Cuvelier D, Dogic Z, Koeleman BN, Brieher W, Field C, Mahadevan L, Weitz D (2008) A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys J 94(8):36–3126

    Article  Google Scholar 

  • Besser A, Schwarz U (2007) Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction. N J Phys 9(11):425–425

    Article  Google Scholar 

  • Brown A, Litvinov R, Discher D, Purohit P, Weisel J (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941):4–741

    Article  Google Scholar 

  • Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17(6):253–285

    Article  Google Scholar 

  • Colombelli J, Besser A, Kress H, Reynaud E, Girard P, Caussinus E, Haselmann U, Small J, Schwarz U, Stelzer E (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122(Pt 10):79–1665

    Google Scholar 

  • De Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • Ehrlicher AJ, Krishnan R, Guo M, Bidan CM, Weitz D, Pollak M (2015) Alpha-actinin binding kinetics modulate cellular dynamics and force generation. PNAS 112(21):6619–6624

    Article  Google Scholar 

  • Fabry B, Maksym GN, Butler J, Glogauer M, Navajas D, Fredberg J (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102

    Article  Google Scholar 

  • Fabry B, Maksym GN, Butler J, Glogauer M, Navajas D, Taback N, Millet E, Fredberg J (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E 68(4):041914

    Article  Google Scholar 

  • Gardel M, Shin J, Mackintosh F, Mahadevan L, Matsudaira P, Weitz D (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):5–1301

    Article  Google Scholar 

  • Golji J, Collins R, Mofrad M (2009) Molecular mechanics of the \(\alpha \)-actinin rod domain: bending, torsional, and extensional behavior. PLoS Comput Biol 5:e1000389

    Article  Google Scholar 

  • Gunst S, Fredberg J (2003) The first three minutes: smooth muscle contraction, cytoskeletal events, and soft glasses. J Appl Physiol 95(1):413–425

    Article  Google Scholar 

  • Gunst S, Zhang W (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295(3):C576–C587

    Article  Google Scholar 

  • Hirshman C, Zhu D, Panettieri R, Emala C (2001) Actin depolymerization via the beta-adrenoceptor in airway smooth muscle cells: a novel PKA-independent pathway. Am J Physiol Cell Physiol 281(5):C1468–C1476

    Google Scholar 

  • Hirshman C, Zhu D, Pertel T, Panettieri R, Emala C (2005) Isoproterenol induces actin depolymerization in human airway smooth muscle cells via activation of an Src kinase and GS. Am J Physiol Lung Cell Mol Physiol 288(5):L924–L931

    Article  Google Scholar 

  • Joanny J, Prost J (2009) Active gels as a description of the actin–myosin cytoskeleton. HFSP J 3(2):94–104

    Article  Google Scholar 

  • Kassianidou E, Kumar S (2015) A biomechanical perspective on stress fiber structure and function. Biochim Biophys Acta Mol Cell Res 1853(11):3065–3074

    Article  Google Scholar 

  • Kim T, Hwang W, Lee H, Kamm R (2009) Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput Biol 5(7):e1000439

    Article  Google Scholar 

  • Lieleg O, Claessens M, Heussinger C, Frey E, Bausch A (2007) Mechanics of bundled semiflexible polymer networks. Phys Rev Lett 99(8):088102

    Article  Google Scholar 

  • Lieleg O, Kayser J, Brambilla G, Cipelletti L, Bausch A (2011) Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat Mater 10(3):236–242

    Article  Google Scholar 

  • Liu J, Taylor DW, Taylor K (2004) A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J Mol Biol 338(1):25–115

    Article  Google Scholar 

  • Liverpool T (2006) Active gels: where polymer physics meets cytoskeletal dynamics. Philos Trans R Soc A 364(1849):55–3335

    Article  Google Scholar 

  • López-Menéndez H, Rodríguez J (2016) Microstructural model for cyclic hardening in f-actin networks crosslinked by \(\alpha \)-actinin. J Mech Phys Solids 91:28–39

    Article  MathSciNet  Google Scholar 

  • Mackintosh F, Kas J, Janmey P (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75:4425

    Article  Google Scholar 

  • Mandadapu K, Govindjee S, Mofrad M (2008) On the cytoskeleton and soft glassy rheology. J Biomech 41(7):1467–1478

    Article  Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2008) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373

    Article  Google Scholar 

  • Murrell M, Gardel M (2012) F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. PNAS 109(51):20820–20825

    Article  Google Scholar 

  • Murtada S, Kroon M, Holzapfel G (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9(6):62–749

    Article  Google Scholar 

  • Palmer J, Boyce M (2008) Constitutive modeling of the stress–strain behavior of F-actin filament networks. Acta Biomater 4(3):597–612

    Article  Google Scholar 

  • Purohit P, Litvinov R, Brown A, Discher D, Weisel J (2011) Protein unfolding accounts for the unusual mechanical behavior of fibrin networks. Acta Biomater 7(6):2374–2383

    Article  Google Scholar 

  • Schmoller K, Lieleg O, Bausch A (2009) Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks. Biophys J 97(1):9–83

    Article  Google Scholar 

  • Schmoller K, Fernandez P, Arevalo R, Blair D, Bausch A (2010) Cyclic hardening in bundled actin networks. Nat Commun 1:134

  • Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78(10):2020

    Article  Google Scholar 

  • Stamenović D, Suki B, Fabry B, Wang N, Fredberg J, Buy J (2004) Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J Appl Physiol 96(5):1600–1605

    Article  Google Scholar 

  • Trepat X, Deng L, An S, Navajas D, Tschumperlin D, Gerthoffer W, Butler J, Fredberg J (2007) Universal physical responses to stretch in the living cell. Nature 447(7144):592–595

    Article  Google Scholar 

  • Vigliotti A, Ronan R, Baaijens FPT, Deshpande VS (2016) A thermodynamically motivated model for stress-fiber reorganization. Biomech Model Mechanobiol 15(4):761–789

    Article  Google Scholar 

  • Wagner B, Tharmann R, Haase I, Fischer M, Bausch A (2006) Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. PNAS 103(38):8–13974

    Article  Google Scholar 

  • Wolff L, Fernandez P, Kroy K (2010) Inelastic mechanics of sticky biopolymer networks. N J Phys 12(5):053024

    Article  Google Scholar 

  • Wolff L, Fernandez P, Kroy K (2012) Resolving the stiffening–softening paradox in cell mechanics. PloS ONE 7(7):e40063

    Article  Google Scholar 

  • Yao N, Broedersz C, Depken M, Becker D, Pollak M, Mackintosh F, Weitz D (2013) Stress-enhanced gelation: a dynamic nonlinearity of elasticity. Phys Rev Lett 110(1):018103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio López-Menéndez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Menéndez, H., Rodríguez, J.F. Towards the understanding of cytoskeleton fluidisation–solidification regulation. Biomech Model Mechanobiol 16, 1159–1169 (2017). https://doi.org/10.1007/s10237-017-0878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0878-6

Keywords

Navigation