Skip to main content

Advertisement

Log in

Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions’ orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young’s modulus \(E = 1.90\) GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young’s modulus in the preferential direction of 9–16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This was so due to the commented time limitation of the model, which makes it inapplicable well before the tissue is saturated with mineral.

References

  • Beno T, Yoon Y, Cowin S, Fritton SP (2006) Estimation of bone permeability using accurate microstructural measurements. J Biomech 39(13):2378–2387

    Article  Google Scholar 

  • Benveniste Y (1990) Some remarks on three micromechanical models in composite media. J Appl Mech T ASME 57(2):474–476

    Article  Google Scholar 

  • Bonfield W, Li E (1967) Anisotropy of nonelastic flow in bone. J Appl Phys 38:2450–2455

    Article  Google Scholar 

  • Brighton C, Hunt R (1986) Histochemical localization of calcium in the fracture callus with potassium pyroantimonate: possible role of chondrocyte mitochondrial calcium in callus calcification. J Bone Joint Surg Am 68–A(5):703–715

    Article  Google Scholar 

  • Brighton C, Hunt R (1997) Early histologic and ultrastructural changes in microvessels of periosteal callus. J Orthop Trauma 11(4):244–253

    Article  Google Scholar 

  • Buckwalter J, Glimcher M, Cooper R, Recker R (1995) Bone biology. Part I: structure, blood supply, cells, matrix, and mineralization. J Bone Joint Surg Am 77(8):1256–1275

    Article  Google Scholar 

  • Bunge H (1982) Texture analysis in materials science: mathematical methods. Butterworths, Dayton

    Google Scholar 

  • Chou P, Carleone J, Hsu C (1972) Elastic constants of layered media. J Compos Mater 6(1):80–93

    Article  Google Scholar 

  • Cowin S (1999) Bone poroelasticity. J Biomech 32:217–238

    Article  Google Scholar 

  • Cowin S, Yang G, Mehrabadi M (1999) Bounds on the effective anisotropic elastic constants. J Elast 57(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Crolet J, Aoubiza B, Meunier A (1993) Compact bone: numerical simulation of mechanical characteristics. J Biomech 26(6):677–687

    Article  Google Scholar 

  • Currey J (1969) The relationship between the stiffness and the mineral content of bone. J Biomech 2:477–480

    Article  Google Scholar 

  • Cusack S, Miller A (1979) Determination of the elastic constants of collagen by brillouin light scattering. J Mol Biol 135:39–51

    Article  Google Scholar 

  • Deuerling J, Yue W, Espinoza Orías A, Roeder R (2009) Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone. J Biomech 42(13):2061–2067

    Article  Google Scholar 

  • Dong X, Guo X (2006) Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J Biomech Eng T ASME 128(3):309–316

    Article  Google Scholar 

  • Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241(1226):376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Farlay D, Panczer G, Rey C, Delmas P, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445

    Article  Google Scholar 

  • Ferrari M, Johnson G (1989) Effective elasticities of short-fiber composites with arbitrary orientation distribution. Mech Mater 8(1):67–73

    Article  Google Scholar 

  • Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  Google Scholar 

  • Fritsch A, Dormieux L, Hellmich C (2006) Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. CR Mec 334:151–157

    Article  MATH  Google Scholar 

  • Fritsch A, Hellmich C, Young P (2013) Micromechanics-derived scaling relations for poroelasticity and strength of brittle porous polycrystals. J Appl Mech 80(020):905

    Google Scholar 

  • Frost H (1989a) The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop Relat Res 248:283–293

    Google Scholar 

  • Frost H (1989b) The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop Relat Res 248:294–309

    Google Scholar 

  • García-Aznar J, Rueberg T, Doblaré M (2005) A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity. Biomech Model Mechanobiol 4:147–167

    Article  Google Scholar 

  • García-Rodríguez J (2014) Modelo de remodelación de callo óseo de fractura de fémur humano. PhD thesis, Universidad de Sevilla, Seville, Spain

  • Gardner T, Stoll T, Marks L, Mishra S, Knothe Tate M (2000) The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture—a FEM study. J Biomech 33(4):415–425

    Article  Google Scholar 

  • Geoffrey H (1972) The biochemistry and physiology of bone, vol 1. Academic Press, New York

    Google Scholar 

  • Ghanbari J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42(10):1560–1565

    Article  Google Scholar 

  • Gong J, Arnold J, Cohn S (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–332

    Article  Google Scholar 

  • Grant C, Brockwell D, Radford S, Thomson N (2009) Tuning the elastic modulus of hydrated collagen fibrils. Biophys J 97:2985–2992

    Article  Google Scholar 

  • Hashin Z (1968) Assessment of the self-consistent scheme approximation. J Compos Mater 2:284–300

    Article  Google Scholar 

  • Hellmich C, Ulm FJ (2002) Micromechanical model for ultrastructural stiffness of mineralized tissues. J Eng Mech ASCE 128(8):898–908

    Article  Google Scholar 

  • Hellmich C, Barthélémy JF, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach. Eur J Mech A Solid 23(5):783–810

    Article  MATH  Google Scholar 

  • Hernandez C, Beaupré G, Keller T, Carter D (2001a) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29(1):74–78

    Article  Google Scholar 

  • Hernandez C, Beaupré G, Marcus R, Carter D (2001b) A theoretical analysis of the contributions of remodeling space, mineralization, and bone balance to changes in bone mineral density during alendronate treatment. Bone 29(6):511–516

    Article  Google Scholar 

  • Hernandez C, Majeska R, Schaffler M (2004) Osteocyte density in woven bone. Bone 35(5):1095–1099

    Article  Google Scholar 

  • Hill R (1965) A self consistent mechanics of composite materials. J Mech Phys Sol 13:213–222

    Article  Google Scholar 

  • Hunt R (2016) Material interaction varies bone strength: mammals.http://www.asknature.org/strategy/6bc0469baa23a29a6b5f9eb6febb75a8. Accessed 10 Mar 2016

  • Jackson S, Cartwright A, Lewis D (1978) The morphology of bone mineral crystals. Calcif Tissue Int 25:217–222

    Article  Google Scholar 

  • Katz J (1968) Hard tissue as a composite material—I. Bounds on the elastic behavior. J Biomech 4:455–473

    Article  Google Scholar 

  • Kotha S, Guzelsu N (2007) Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content. J Biomech 40(1):36–45

    Article  Google Scholar 

  • Lees S, Heeley J, Cleary P (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif Tissue Int 29(2):107–117

    Article  Google Scholar 

  • Leong P, Morgan E (2008) Measurement of fracture callus material properties via nanoindentation. Acta Biomater 4:1569–1575

    Article  Google Scholar 

  • Martínez-Reina J, Domínguez J, García-Aznar J (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10(3):309–322

    Article  Google Scholar 

  • McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60 B(2):150–162

    Google Scholar 

  • Mitchel B, Burr D (1988) Stiffness of compact bone. effect of porosity and density. J Biomech 21:13–16

    Article  Google Scholar 

  • Mora-Macías J (2016) Biomechanics of bone transport: in vivo, ex vivo and numerical characterization. PhD thesis, Universidad de Sevilla, Seville, Spain

  • Mora-Macías J, Reina-Romo E, Domínguez J (2016) Model of the distraction callus tissue behavior during bone transport based in experiments in vivo. J Mech Behav Biomed Mater 61:419–430

    Article  Google Scholar 

  • Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Parfitt A (1987) Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis. Clin Obstet Gynecol 30(4):789–811

    Article  Google Scholar 

  • Pettermann H, Böhm H, Rammerstorfer F (1997) Some direction-dependent properties of matrix-inclusion type composites with given reinforcement orientation distributions. Compos Part B Eng 28(3):253–265

    Article  Google Scholar 

  • Porter D (2004) Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Mat Sci Eng A Struct 365(1–2):38–45

    Article  Google Scholar 

  • Remaggi F, Canè V, Palumbo C, Ferretti M (1998) Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel-fibered bones. Ital J Anat Embryol 103(4):145–155

    Google Scholar 

  • Rho J, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  Google Scholar 

  • Sasaki N, Matsushima N, Ikawa T, Yamamura H, Fukuda A (1989) Orientation of bone mineral and its role in the anisotropic mechanical properties of bone transverse anisotropy. J Biomech 22:157–164

    Article  Google Scholar 

  • Sevostianov I, Kachanov M (2000) Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J Biomech 33(7):881–888

    Article  Google Scholar 

  • Sfeir C, Ho C, Doll B et al (2005) Fracture repair. In: Lieberman J, Friedlaender G (eds) Bone regeneration and repair. Humana Press Inc, Totowa, pp 21–43

    Chapter  Google Scholar 

  • Smith J (1960) Collagen fibre patterns in mammalian bone. J Anat 94(3):329–344

    Google Scholar 

  • Su X, Feng Q, Cui F, Zhu X (1997) Microstructure and micromechanical properties of the mid-diaphyses of human fetal femurs. Connect Tissue Res 36(3):271–286

    Article  Google Scholar 

  • Su X, Sun K, Cui F, Landis W (2003) Organization of apatite crystals in human woven bone. Bone 32(2):150–162

    Article  Google Scholar 

  • Tiburtius S, Schrof S, Molnár F, Varga P, Peyrin F, Grimal Q, Raum K, Gerisch A (2014) On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 13(5):1003–1023

    Article  Google Scholar 

  • Vetter A, Epari D, Seidel R, Schell H, Fratzl P, Duda G, Weinkamer R (2010) Temporal tissue patterns in bone healing of sheep. J Orthop Res 28(11):1440–1447

    Article  Google Scholar 

  • Vetter A, Liu Y, Witt F et al (2011) The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. J Biomech 44(3):517–523

    Article  Google Scholar 

  • Wang L, Fritton S, Cowin S, Weinbaum S (1999) Fluid pressure relaxation depends upon osteonal microstructure: modeling of an oscillatory bending experiment. J Biomech 32:663–672

    Article  Google Scholar 

  • Wen H, Cui F, Feng Q, Li H, Zhu X (1995) Microstructural investigation of the early external callus after diaphyseal fractures of human long bone. J Struct Biol 114(2):115–122

    Article  Google Scholar 

  • Yang G, Kabel J, Van Rietbergen B, Odgaard A, Huiskes R, Cowin S (1998) Anisotropic Hooke’s law for cancellous bone and wood. J Elast 53(2):125–146

    Article  MATH  Google Scholar 

  • Yoon Y, Cowin S (2008a) An estimate of anisotropic poroelastic constants of an osteon. Biomech Model Mechanobiol 7(1):13–26

    Article  Google Scholar 

  • Yoon Y, Cowin S (2008b) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7(1):1–11

    Article  Google Scholar 

  • Yoon Y, Yang G, Cowin S (2002) Estimation of the effective transversely isotropic elastic constants of a material from known values of the material’s orthotropic elastic constants. Biomech Model Mechanobiol 1(1):83–93

    Article  Google Scholar 

  • Zhang D, Cowin S (1994) Oscillatory bending of a poroelastic beam. J Mech Phys Solids 42:1575–1599

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang D, Weinbaum S, Cowin S (1998) Estimates of the peak pressure in bone pore water. J Biomech Eng 120:697–703

    Article  Google Scholar 

  • Zhou H, Shen V, Dempster D, Lindsay R (2001) Continuous parathyroid hormone and estrogen administration increases vertebral cancellous bone volume and cortical width in the estrogen-deficient rat. J Bone Miner Res 16:1300–1307

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant DPI2014-58233-P from the Ministerio de Economía y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez-Reina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Rodríguez, J., Martínez-Reina, J. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation. Biomech Model Mechanobiol 16, 159–172 (2017). https://doi.org/10.1007/s10237-016-0808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0808-z

Keywords

Navigation