Skip to main content
Log in

Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed from magnetic resonance angiography images, pulsatile flow and emboli with different sizes and material properties. Here, the fluid–structure interactions method was used to simulate the motion of deformable and rigid emboli through cerebral arteries. Hemodynamic changes in the circle of Willis due to the entrance of embolus are observed. The effect of material properties on the distribution ratio and dynamics of motion of the emboli in the cerebral arterial network is also analyzed. Our results reveal that as the rigidity of emboli increases, higher proportion of them tend to enter to the larger arteries (e.g., middle cerebral artery). Scrutinizing the amount of stress acting on the emboli represented in this paper can broaden our understanding of the rheological phenomenon (e.g., lysis or growth of emboli during embolism). The approach of considering different material properties of the thrombus in a patient-specific computational model not only enable us to better understand the roll of biomechanical parameters causing the embolism, but also lead to a better clinical decision making to manage patients with stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abolfazli E, Fatouraee N, Vahidi B (2014) Dynamics of motion of a clot through an arterial bifurcation: a finite element analysis. Fluid Dyn Res 46:055505

    Article  MathSciNet  Google Scholar 

  • Alastruey J, Parker K, Peiró J, Byrd S, Sherwin S (2007a) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40:1794–1805

    Article  Google Scholar 

  • Alastruey J, Parker KH, Peiro J, Byrd SM, Sherwin SJ (2007b) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40:1794–1805. doi:10.1016/j.jbiomech.2006.07.008

    Article  Google Scholar 

  • Basciano CA, Kleinstreuer C, Kennedy AS, Dezarn WA, Childress E (2010) Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng 38:1862–1879

    Article  Google Scholar 

  • Bathe K-J, Ledezma GA (2007) Benchmark problems for incompressible fluid flows with structural interactions. Comput Struct 85:628–644

    Article  Google Scholar 

  • Bathe K-J, Zhang H (2009) A mesh adaptivity procedure for CFD and fluid–structure interactions. Comput Struct 87:604–617. doi:10.1016/j.compstruc.2009.01.017

    Article  Google Scholar 

  • Bathe K, Saunders H (1984) Finite element procedures in engineering analysis. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Berger SA, Jou L-D (2000) Flows in stenotic vessels. Annu Rev Fluid Mech 32:347–382. doi:10.1146/annurev.fluid.32.1.347

    Article  MathSciNet  MATH  Google Scholar 

  • Bushi D, Grad Y, Einav S, Yodfat O, Nishri B, Tanne D (2005) Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model. Stroke 36:2696–2700. doi:10.1161/01.STR.0000190097.08862.9a

    Article  Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2006a) Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am J Neuroradiol 27:2061–2068

    Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad Radiol 13:811–821. doi:10.1016/j.acra.2006.03.011

    Article  Google Scholar 

  • Cebral J, Castro M, Soto O, Löhner R, Alperin N (2003) Blood-flow models of the circle of Willis from magnetic resonance data. J Eng Math 47:369–386. doi:10.1023/B:ENGI.0000007977.02652.02

    Article  MathSciNet  MATH  Google Scholar 

  • Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ (2011) Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR Am J Neuroradiol 32:1237–1244. doi:10.3174/ajnr.A2485

    Article  Google Scholar 

  • Chung EM, Hague JP, Chanrion M-A, Ramnarine KV, Katsogridakis E, Evans DH (2010) Embolus trajectory through a physical replica of the major cerebral arteries. Stroke 41:647–652

    Article  Google Scholar 

  • Cieslicki K, Ciesla D (2005) Investigations of flow and pressure distributions in physical model of the circle of Willis. J Biomech 38:2302–2310. doi:10.1016/j.jbiomech.2004.07.038

    Article  Google Scholar 

  • Devault K, Gremaud PA, Novak V, Olufsen MS, VerniÈRes G, Zhao P (2008) Blood flow in the circle of willis: modeling and calibration. Multiscale Model Simul SIAM Interdiscip J 7:888–909. doi:10.1137/07070231X

    Article  MathSciNet  MATH  Google Scholar 

  • Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723. doi:10.1016/0045-7825(82)90128-1

    Article  MATH  Google Scholar 

  • Fabbri D, Long Q, Das S, Pinelli M (2014) Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density. Biomech Model Mechanobiol 13:289–302

    Article  Google Scholar 

  • Fahy P, Delassus P, McCarthy P, Sultan S, Hynes N, Morris L (2014) An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries. J Biomech Eng 136:011007. doi:10.1115/1.4025778

    Article  Google Scholar 

  • Fahy P et al (2015) An in vitro evaluation of emboli trajectories within a three-dimensional physical model of the circle of willis under cerebral blood flow conditions. Ann Biomed Eng 43(9):2265–2278. doi:10.1007/s10439-015-1250-6

    Article  Google Scholar 

  • Gacs G, Merei F, Bodosi M (1982) Balloon catheter as a model of cerebral emboli in humans. Stroke 13:39–42

    Article  Google Scholar 

  • Grinberg L, Cheever E, Anor T, Madsen JR, Karniadakis GE (2011) Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann Biomed Eng 39:297–309. doi:10.1007/s10439-010-0132-1

    Article  Google Scholar 

  • Hall JE, Guyton AC (2011) Guyton and Hall textbook of medical physiology. Saunders Elsevier. http://worldcat.org. http://www.mdconsult.com/public/book/view?title=Hall:+Guyton+and+Hall+Textbook+of+Medical+Physiology

  • Hung TC, Hochmuth RM, Joist JH, Sutera SP (1976) Shear-induced aggregation and lysis of platelets. Trans Am Soc Artif Intern Organs 22:285–291

    Google Scholar 

  • Joutel A et al (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Investig 120:433–445

    Article  Google Scholar 

  • Kirchhof K, Welzel T, Mecke C, Zoubaa S, Sartor K (2003) Differentiation of white, mixed, and red thrombi: value of CT in estimation of the prognosis of thrombolysis phantom study. Radiology 228:126–130. doi:10.1148/radiol.2273020530

    Article  Google Scholar 

  • Krabbe-Hartkamp MJ et al (1998) Circle of Willis: morphologic variation on three-dimensional time-of-flight MR angiograms. Radiology 207:103–111. doi:10.1148/radiology.207.1.9530305

    Article  Google Scholar 

  • Lin K-H, Shyu W-C (2006) Middle cerebral artery occlusion compromising the sensory and motor cortices. Tzu Chi Med J 18:382–384

    Google Scholar 

  • Long Q, Luppi L, König CS, Rinaldo V, Das SK (2008) Study of the collateral capacity of the circle of Willis of patients with severe carotid artery stenosis by 3D computational modeling. J Biomech 41:2735–2742. doi:10.1016/j.jbiomech.2008.06.006

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21:163–169. doi:10.1145/37402.37422

    Article  Google Scholar 

  • Maaly MA, Ismail AA (2011) Three dimensional magnetic resonance angiography of the circle of Willis: anatomical variations in general Egyptian population. Egypt J Radiol Nucl Med 42:405–412. doi:10.1016/j.ejrnm.2011.09.001

    Article  Google Scholar 

  • Macdonald RL, Kowalczuk A, Johns L (1995) Emboli enter penetrating arteries of monkey brain in relation to their size. Stroke 26:1247–1251

    Article  Google Scholar 

  • Marder VJ et al (2006) Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 37:2086–2093

    Article  Google Scholar 

  • Masuda J, Yutani C, Ogata J, Kuriyama Y, Yamaguchi T (1994) Atheromatous embolism in the brain A clinicopathologic analysis of 15 autopsy cases. Neurology 44:1231–1231

    Article  Google Scholar 

  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP (2007) Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109:566–576

    Article  Google Scholar 

  • Moore S, David T, Chase JG, Arnold J, Fink J (2006) 3D models of blood flow in the cerebral vasculature. J Biomech 39:1454–1463. doi:10.1016/j.jbiomech.2005.04.005

    Article  Google Scholar 

  • Moorhead KT, Chase JG, David T, Arnold J (2006) Metabolic model of autoregulation in the Circle of Willis. J Biomech Eng 128:462–466. doi:10.1115/1.2187048

    Article  Google Scholar 

  • Mozaffarian D et al (2014) Heart disease and stroke statistics—2015 Update: a report from the American Heart Association. Circulation. doi:10.1161/cir.0000000000000152

  • Nesbitt WS et al (2009) A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–673. http://www.nature.com/nm/journal/v15/n6/suppinfo/nm.1955_S1.html

  • Ng YS, Stein J, Ning M, Black-Schaffer RM (2007) Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke 38:2309–2314

    Article  Google Scholar 

  • Pedley TJ (1980) The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pollanen M, Deck J (1990) The mechanism of embolic watershed infarction: experimental studies. Can J Neurol Sci Le J Canadien des sciences neurologiques 17:395–398

    Article  Google Scholar 

  • Rapp JH, Hollenbeck K, Pan XM (2008) An experimental model of lacunar infarction: embolization of microthrombi. J Vasc Surg 48:196–200

    Article  Google Scholar 

  • Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K (2014) Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech 47:1642–1651

    Article  Google Scholar 

  • Riha P, Wang X, Liao R, Stoltz JF (1999) Elasticity and fracture strain of whole blood clots. Clin Hemorheol Microcirc 21:45–49

    Google Scholar 

  • Ringelstein EB, Biniek R, Weiller C, Ammeling B, Nolte PN, Thron A (1992) Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 42:289–298

    Article  Google Scholar 

  • Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55:1081–1088

    Article  Google Scholar 

  • Silverman IE, Rymer MM, Caplan LR, Spiegel GR, Schmidt RE (2009) Ischemic stroke: an atlas of investigation and treatment, Illustrated edn. Clinical Publishing, USA

    Google Scholar 

  • Tanaka H, Fujita N, Enoki T, Matsumoto K, Watanabe Y, Murase K, Nakamura H (2006) Relationship between variations in the circle of Willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: reference data from 125 healthy volunteers. Am J Neuroradiol 27:1770–1775

    Google Scholar 

  • Tietjen GE, Futrell N, Schultz LR (1993) Embolic infarcts of carotid origin differ in size and site with contralateral carotid patency. J Neurol Sci 118:217–222

    Article  Google Scholar 

  • Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54:995–1009. doi:10.1002/fld.1497

    Article  MathSciNet  MATH  Google Scholar 

  • Torvik A, Skullerud K (1982) Watershed infarcts in the brain caused by microemboli. Clin Neuropathol 1:99–105

    Google Scholar 

  • Vahidi B, Fatouraee N (2012) Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation. J Biomech 45:1312–1322

    Article  Google Scholar 

  • Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P (2003) Stroke. Lancet 362:1211–1224. doi:10.1016/s0140-6736(03)14544-8

    Article  Google Scholar 

  • Wijman C, Babikian V, Winter M, Pochay V (2000) Distribution of cerebral microembolism in the anterior and middle cerebral arteries. Acta Neurol Scand 101:122–127

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thank Dr. Afshin A. Divani from Department of Neurology at the University of Minnesota for the valuable comments and suggestions made during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Fatouraee.

Ethics declarations

conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaee, F., Vahidi, B. & Fatouraee, N. Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model. Biomech Model Mechanobiol 15, 1295–1305 (2016). https://doi.org/10.1007/s10237-016-0762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0762-9

Keywords

Navigation