Skip to main content
Log in

Identification of tail binding effect of kinesin-1 using an elastic network model

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Kinesin is a motor protein that delivers cargo inside a cell. Kinesin has many different families, but they perform basically same function and have same motions. The walking motion of kinesin enables the cargo delivery inside the cell. Autoinhibition of kinesin is important because it explains how function of kinesin inside a cell is stopped. Former researches showed that tail binding is related to autoinhibition of kinesin. In this work, we performed normal mode analysis with elastic network model using different conformation of kinesin to determine the effect of tail binding by considering four models such as functional form, autoinhibited form, autoinhibited form without tail, and autoinhibited form with carbon structure. Our calculation of the thermal fluctuation and cross-correlation shows the change of tail-binding region in structural motion. Also strain energy of kinesin showed that elimination of tail binding effect leads the structure to have energetically similar behavior with the functional form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asbury CL, Fehr AN, Block SM (2003) Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302(5653):2130–2134

    Article  Google Scholar 

  • Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80(1):505–515

    Article  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2(3):173–181

    Article  Google Scholar 

  • Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15(5):586–592

    Article  Google Scholar 

  • Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17(6):633–640

    Article  Google Scholar 

  • Bahar I, Lezon TR, Yang L-W, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39(1):23–42

  • Buehler MJ, Yung YC (2009) Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat Mater 8(3):175–188

    Article  Google Scholar 

  • Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435(7040):308–312

    Article  Google Scholar 

  • Clancy BE, Behnke-Parks WM, Andreasson JOL, Rosenfeld SS, Block SM (2011) A universal pathway for kinesin stepping. Nat Struct Mol Biol 18(9):1020–1027

    Article  Google Scholar 

  • Coy DL, Hancock WO, Wagenbach M, Howard J (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1(5):288–292

    Article  Google Scholar 

  • Czövek A, Szöllősi Gergely J, Derényi I (2011) Neck-linker docking coordinates the kinetics of kinesin’s heads. Biophys J 100(7):1729–1736

    Article  Google Scholar 

  • Dietrich KA, Sindelar CV, Brewer PD, Downing KH, Cremo CR, Rice SE (2008) The kinesin-1 motor protein is regulated by a direct interaction of its head and tail. Proc Natl Acad Sci 105(26):8938–8943

    Article  Google Scholar 

  • Guydosh NR, Block SM (2006) Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc Natl Acad Sci 103(21):8054–8059

    Article  Google Scholar 

  • Guydosh NR, Block SM (2009) Direct observation of the binding state of the kinesin head to the microtubule. Nature 461(7260):125–128

    Article  Google Scholar 

  • Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev Lett 79(16):3090

    Article  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350):519–526

    Article  Google Scholar 

  • Hoeprich Gregory J, Thompson Andrew R, McVicker Derrick P, Hancock William O, Berger Christopher L (2014) Kinesin’s neck-linker determines its ability to navigate obstacles on the microtubule surface. Biophys J 106(8):1691–1700

    Article  Google Scholar 

  • Hyeon C, Onuchic JN (2007) Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc Natl Acad Sci 104(7):2175–2180

    Article  Google Scholar 

  • Hyeon C, Onuchic JN (2011) A structural perspective on the dynamics of kinesin motors. Biophys J 101(11):2749–2759

    Article  Google Scholar 

  • Kaan HYK, Hackney DD, Kozielski F (2011) The structure of the kinesin-1 motor–tail complex reveals the mechanism of autoinhibition. Science 333(6044):883–885

    Article  Google Scholar 

  • Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6(8):469–479

    Article  Google Scholar 

  • Mather WH, Fox RF (2006) Kinesin’s biased stepping mechanism: amplification of neck linker zippering. Biophys J 91(7):2416–2426

  • Miyashita O, Onuchic JN, Wolynes PG (2003) Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci USA 100(22):12570–12575

    Article  Google Scholar 

  • Paparcone R, Buehler MJ (2011) Failure of A\({\upbeta }\)(1–40) amyloid fibrils under tensile loading. Biomaterials 32(13):3367–3374

  • Paparcone R, Keten S, Buehler MJ (2010) Atomistic simulation of nanomechanical properties of Alzheimer’s A\(\upbeta \)(1–40) amyloid fibrils under compressive and tensile loading. J Biomech 43(6):1196–1201

  • Scarabelli G, Grant BJ (2013) Mapping the structural and dynamical features of kinesin motor domains. PLoS Comput Biol 9(11):e1003329

    Article  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77(9):1905

    Article  Google Scholar 

  • Togashi Y, Yanagida T, Mikhailov AS (2010) Nonlinearity of mechanochemical motions in motor proteins. PLoS Comput Biol 6(6):e1000814

    Article  Google Scholar 

  • Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA (1998) Light chain-dependent regulation of Kinesin’s interaction with microtubules. J Cell Biol 143(4):1053–1066

    Article  Google Scholar 

  • Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10(11):765–777

    Article  Google Scholar 

  • Verhey KJ, Kaul N, Soppina V (2011) Kinesin assembly and movement in cells. Annu Rev Biophys 40(1):267–288

    Article  Google Scholar 

  • Xu CY, Tobi D, Bahar I (2003) Allosteric changes in protein structure computed by a simple mechanical model: hemoglobin T \(\leftrightarrow \) R2 transition. J Mol Biol 333(1):153–168

  • Xu Z, Paparcone R, Buehler MJ (2010) Alzheimer’s A\(\upbeta \)(1–40) amyloid fibrils feature size-dependent mechanical properties. Biophys J 98(10):2053–2062

  • Yang Z, Májek P, Bahar I (2009) Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL. PLoS Comput Biol 5(4):e1000360

    Article  Google Scholar 

  • Yoon G, Kwak J, Kim JI, Na S, Eom K (2011) Mechanical characterization of amyloid fibrils using coarse-grained normal mode analysis. Adv Funct Mater 21(18):3454–3463

    Article  Google Scholar 

  • Zheng W, Doniach S (2003) A comparative study of motor-protein motions by using a simple elastic-network model. Proc Natl Acad Sci USA 100(23):13253–13258

    Article  Google Scholar 

  • Zheng W, Brooks BR, Hummer G (2007) Protein conformational transitions explored by mixed elastic network models. Proteins Struct Funct Bioinform 69(1):43–57

    Article  Google Scholar 

Download references

Acknowledgments

S.N. gratefully acknowledges the financial support from Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2007-0056094) and (No. 2013-055175). H.J.C. is grateful to the financial support from Global Ph.D. Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2014H1A2A1021042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsoo Na.

Additional information

Jae In Kim and Hyun Joon Chang have made equal contributions in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.I., Chang, H.J. & Na, S. Identification of tail binding effect of kinesin-1 using an elastic network model. Biomech Model Mechanobiol 14, 1107–1117 (2015). https://doi.org/10.1007/s10237-015-0657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0657-1

Keywords

Navigation