Skip to main content
Log in

Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about \(7\,\upmu \text{ m }\)) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of \(6.5\,\upmu \text{ m }\), the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about \(0.8\,\upmu \text{ m }\) was detected. With a validity in the range of 10 nm and a precision down to about 3–5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agard DA (1984) Optical sectioning microscopy: cellular architecture in three dimensions. Annu Rev Biophys Bioeng 13(1):191–219

    Article  Google Scholar 

  • Aguet F, Van De Ville D, Unser M (2005) A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. Opt Express 13(26):10503–10522

    Article  Google Scholar 

  • Alcor D, Gouzer G, Triller A (2009) Single-particle tracking methods for the study of membrane receptors dynamics. Eur J Neurosci 30(6):987–997

    Article  Google Scholar 

  • Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145

    Article  Google Scholar 

  • Bachir AI, Durisic N, Hebert B, Grutter P, Wiseman PW (2006) Characterization of blinking dynamics in quantum dot ensembles using image correlation spectroscopy. J Appl Phys 99(6):064503–064507

    Article  Google Scholar 

  • Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brokmann X, Ehrensperger M-V, Hermier J-P, Triller A, Dahan M (2005) Orientational imaging and tracking of single CdSe nanocrystals by defocused microscopy. Chem Phys Lett 406:210–214

    Article  Google Scholar 

  • Cagnet M, Francon M, Thrierr JC (1962) Atlas of optical phenomena. Springer, Berlin

    Google Scholar 

  • Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104(1):78–89

    Article  Google Scholar 

  • Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388

    Article  Google Scholar 

  • Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71:528–541

    Article  Google Scholar 

  • Combs CA, Balaban RS (2001) Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP). Biophys J 80(4):2018–2028

    Article  Google Scholar 

  • Desjardins C, Duling BR (1987) Microvessel hematocrit: measurement and implications for capillary oxygen transport. Am J Physiol 252(3 Pt 2):H494–503

    Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560

    Article  Google Scholar 

  • Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RP, Ko TH, Burns LD, Jung JC, Schnitzer MJ (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5(11):935–938

    Google Scholar 

  • Ghosh RN, Webb WW (1994) Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J 66(5):1301–1318

    Article  Google Scholar 

  • Gibson SF, Lanni F (1991) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A 8(10):1601–1613

    Article  Google Scholar 

  • Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290(1):H458–H462

    Article  Google Scholar 

  • Gustafsson MG, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195(Pt 1):10–16

    Article  MathSciNet  Google Scholar 

  • Hell S, Stelzer EHK (1992) Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt Commun 93:277–282

    Article  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  Google Scholar 

  • Jonas M, Yao Y, So PT, Dewey CF Jr (2006) Detecting single quantum dot motion with nanometer resolution for applications in cell biology. IEEE Trans Nanobiosci 5(4):246–250

    Article  Google Scholar 

  • Klitzman B, Johnson PC (1982) Capillary network geometry and red cell distribution in hamster cremaster muscle. Am J Physiol 242(2):H211–H219

    Google Scholar 

  • Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65(5):2021–2040

    Article  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    Article  Google Scholar 

  • Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25(6):1773–1783

    Google Scholar 

  • Luo R, Yang XY, Peng XF, Sun YF (2006) Three-dimensional tracking of fluorescent particles applied to micro-fluidic measurements. J Micromech Microeng 16(8):1689

    Google Scholar 

  • Luo R, Sun Y-F (2011) Pattern matching for three-dimensional tracking of sub-micron fluorescent particles. Meas Sci Technol 22(4): 045402

    Article  MathSciNet  Google Scholar 

  • Park JS, Choi CK, Kihm KD (2005) Temperature measurement for a nanoparticle suspension by detecting the Brownian motion using optical serial sectioning microscopy (OSSM). Meas Sci Technol 16(7):1418

    Article  Google Scholar 

  • Park J-S, Kihm K, Lee J (2010) Nonintrusive measurements of mixture concentration fields by analyzing diffraction image patterns (point spread function) of nanoparticles. Exp Fluids 49(1):183–191

    Google Scholar 

  • Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol (176 Pt 1):1–40

  • Pries AR, Secomb TW (2005) Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol 289(6):H2657–H2664 (Epub 2005 Jul 22)

    Google Scholar 

  • Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol 273(5 Pt 2):H2272–2279

    Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440(5):653–666

    Article  Google Scholar 

  • Speidel M, Jonas A, Florin EL (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28(2):69–71

    Article  Google Scholar 

  • Sundd P, Gutierrez E, Pospieszalska MK, Zhang H, Groisman A, Ley K (2010) Quantitative dynamic footprinting microscopy reveals mechanisms of neutrophil rolling. Nat Methods 7(10):821–824

    Article  Google Scholar 

  • Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259(4):339–350

    Google Scholar 

  • Taylor DL, Wang Y-L (1989) Fluorescence microscopy of moving cells in culture. Academic Press, New York

    Google Scholar 

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  Google Scholar 

  • Vorderwulbecke BJ, Maroski J, Fiedorowicz K, Da Silva-Azevedo L, Marki A, Pries AR, Zakrzewicz A (2012) Regulation of endothelial connexin40 expression by shear stress. Am J Physiol Heart Circ Physiol 302(1):H143–H152

    Google Scholar 

  • Wang XF, Periasamy A, Herman B, Coleman DM (1992) Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications. Crit Rev Anal Chem 23(5):369–395

    Google Scholar 

  • Weijer CJ (2003) Visualizing signals moving in cells. Science 300(5616):96–100

    Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  Google Scholar 

  • Wu M, Roberts JW, Buckley M (2005) Three-dimensional fluorescence particle tracking at micron-scale using a single camera. Exp Fluids 38:461–465

    Article  Google Scholar 

  • Wu M, Roberts JW, Kim S, Koch DL, DeLisa MP (2006) Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique. Appl Environ Microbiol 72(7):4987–4994

    Article  Google Scholar 

  • Zhou R, Xiong B, He Y, Yeung ES (2010) Slowed diffusion of single nanoparticles in the extracellular microenvironment of living cells revealed by darkfield microscopy. Anal Bioanal Chem 399(1):353–359

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Cathrin Dressler for providing for us the fluorescent nanoparticles, to Thomas Meinel for his help in the data analysis and to Klaus Affeld for his help in capillary viscometer measurements. The work of Alex Marki was supported by the Ernst von Leyden Stipend of the Berlin Cancer Society (Berliner Krebsgesellschaft e.V., Berlin, Germany). The project was supported by the Schüchtermann-Foundation (Germany, Dortmund), and the support by H. Warnecke is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel R. Pries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marki, A., Ermilov, E., Zakrzewicz, A. et al. Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology. Biomech Model Mechanobiol 13, 275–288 (2014). https://doi.org/10.1007/s10237-013-0499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0499-7

Keywords

Navigation