Skip to main content
Log in

Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellin RM, Kubicek JD, Frigault MJ, Kamien AJ, Steward RL Jr, Barnes HM, Digiacomo MB, Duncan LJ, Edgerly CK, Morse EM, Park CY, Fredberg JJ, Cheng CM, LeDuc PR (2009) Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc Natl Acad Sci USA 106(52): 22102–22107

    Article  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729–777

    Article  Google Scholar 

  • Boehm H, Mundinger TA, Boehm CHJ, Hagel V, Rauch U, Spatz JP, Curtis JE (2009) Mapping the mechanics and macromolecular organization of hyaluronan-rich cell coats. Soft Matter 5(21): 4331–4337

    Article  Google Scholar 

  • Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, Schlingemann RO, Nieuwdorp M, Stroes ES, Vink H (2010) Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53(12): 2646–2655

    Article  Google Scholar 

  • Chang SF, Chang CA, Lee DY, Lee PL, Yeh YM, Yeh CR, Cheng CK, Chien S, Chiu JJ (2008) Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc Natl Acad Sci USA 105(10): 3927–3932

    Article  Google Scholar 

  • Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207: 113–150

    Article  Google Scholar 

  • Denhez F, Wilcox-Adelman SA, Baciu PC, Saoncella S, Lee S, French B, Neveu W, Goetinck PF (2002) Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem 277(14): 12270–12274

    Article  Google Scholar 

  • Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31(8): 1908–1915

    Article  Google Scholar 

  • Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10): e136–e142

    Article  Google Scholar 

  • Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech 41: 347–374

    Article  Google Scholar 

  • Harfouche R, Hentschel DM, Piecewicz S, Basu S, Print C, Eavarone D, Kiziltepe T, Sasisekharan R, Sengupta S (2009) Glycome and transcriptome regulation of vasculogenesis. Circulation 120(19): 1883–1892

    Article  Google Scholar 

  • Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356): 316–323

    Article  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1): 11–25

    Article  Google Scholar 

  • Jacobs LR (1981) Alterations in surface ultrastructure and anionic sites of rat dimethylhydrazine-induced intestinal tumors. Virchows Arch B Cell Pathol 37(2): 207–216

    Google Scholar 

  • Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1: 241–263

    Article  Google Scholar 

  • Kesmarky G, Kenyeres P, Rabai M, Toth K (2008) Plasma viscosity: a forgotten variable. Clin Hemorheol Microcirc 39(1–4): 243–246

    Google Scholar 

  • Krahling H, Mally S, Eble JA, Noel J, Schwab A, Stock C (2009) The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch 458(6): 1069–1083

    Article  Google Scholar 

  • Levick JR (1987) Flow through interstitium and other fibrous matrices. Q J Exp Physiol 72(4): 409–437

    Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21): 2035–2042

    Article  Google Scholar 

  • Mangakis N, Von Mickwitz CU (1975) Electron microscopical investigations on the glycocalyx of cultivated cells after incubation with extracts from rapidly growing normal and tumour tissues. Pathol Eur 10(2): 105–114

    Google Scholar 

  • Mansour JM (2004) Biomechanics of cartilage. In: Oatis CA (ed) Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams and Wilkins, Philadelphia, pp 66–79

    Google Scholar 

  • Nairn AV, Kinoshita-Toyoda A, Toyoda H, Xie J, Harris K, Dalton S, Kulik M, Pierce JM, Toida T, Moremen KW, Linhardt RJ (2007) Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J Proteome Res 6(11): 4374–4387

    Article  Google Scholar 

  • Ng CP, Swartz MA (2003) Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am J Physiol Heart Circ Physiol 284(5): H1771–H1777

    Google Scholar 

  • Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55(2): 480–486

    Article  Google Scholar 

  • Nikmanesh M, Shi ZD, Tarbell JM (2012) Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnol Bioeng 109(2): 583–594

    Article  Google Scholar 

  • Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch 462(4): 519–528

    Article  Google Scholar 

  • Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355(1): 228–233

    Article  Google Scholar 

  • Paszek MJ, Boettiger D, Weaver VM, Hammer DA (2009) Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput Biol 5(12): e1000604

    Article  MathSciNet  Google Scholar 

  • Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci USA 108(27): 11115–11120

    Article  Google Scholar 

  • Qazi H, Shi ZD, Tarbell JM (2011) Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One 6(5): e20348

    Article  Google Scholar 

  • Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83(3): 1650–1660

    Article  Google Scholar 

  • Reitsma S, Oude Egbrink MG, Vink H, van den Berg BM, Lima Passos V, Engels W, Slaaf DW, van Zandvoort MA (2011) Endothelial glycocalyx structure in the intact carotid artery: a two-photon laser scanning microscopy study. J Vasc Res 48(4): 297–306

    Article  Google Scholar 

  • Rilla K, Tiihonen R, Kultti A, Tammi M, Tammi R (2008) Pericellular hyaluronan coat visualized in live cells with a fluorescent probe is scaffolded by plasma membrane protrusions. J Histochem Cytochem 56(10): 901–910

    Article  Google Scholar 

  • Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12): a005066

    Article  Google Scholar 

  • Secomb TW, Hsu R, Pries AR (2001) Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38(2–3): 143–150

    Google Scholar 

  • Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39(5): 1379–1389

    Article  MathSciNet  Google Scholar 

  • Shi ZD, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39(6): 1608–1619

    Article  Google Scholar 

  • Shi ZD, Ji XY, Qazi H, Tarbell JM (2009) Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am J Physiol Heart Circ Physiol 297(4): H1225–H1234

    Article  Google Scholar 

  • Shi ZD, Abraham G, Tarbell JM (2010) Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparan sulfate proteoglycans and ERK1/2. PLoS One 5(8): e12196

    Article  Google Scholar 

  • Shi ZD, Ji XY, Berardi DE, Qazi H, Tarbell JM (2010) Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism. Am J Physiol Heart Circ Physiol 298(1): H127–H135

    Article  Google Scholar 

  • Shi ZD, Wang H, Tarbell JM (2011) Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One 6(1): e15956

    Article  Google Scholar 

  • Shieh AC, Swartz MA (2011) Regulation of tumor invasion by interstitial fluid flow. Phys Biol 8(1): 015012

    Article  Google Scholar 

  • Shieh AC, Rozansky HA, Hinz B, Swartz MA (2011) Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res 71(3): 790–800

    Article  Google Scholar 

  • Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6): 526–538

    Article  Google Scholar 

  • Stolberg S, McCloskey KE (2009) Can shear stress direct stem cell fate. Biotechnol Prog 25(1): 10–19

    Article  Google Scholar 

  • Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9: 229–256

    Article  Google Scholar 

  • Tarbell JM, Ebong EE (2008) The endothelial glycocalyx: a mechano-sensor and -transducer. Sci Signal 1(40): pt8

    Article  Google Scholar 

  • Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259(4): 339–350

    Article  Google Scholar 

  • Tedgui A, Lever MJ (1984) Filtration through damaged and undamaged rabbit thoracic aorta. Am J Physiol 247(5 Pt 2): H784–H791

    Google Scholar 

  • Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci USA 101(47): 16483–16488

    Article  Google Scholar 

  • Toh YC, Voldman J (2011) Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. Faseb J 25(4): 1208–1217

    Article  Google Scholar 

  • Vink H, Constantinescu AA, Spaan JA (2000) Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101(13): 1500–1502

    Article  Google Scholar 

  • Vuoriluoto K, Jokinen J, Kallio K, Salmivirta M, Heino J, Ivaska J (2008) Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen. Exp Cell Res 314(18): 3369–3381

    Article  Google Scholar 

  • Wang DM, Tarbell JM (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J Biomech Eng 117(3): 358–363

    Article  Google Scholar 

  • Wang S, Tarbell JM (2000) Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model. Arterioscler Thromb Vasc Biol 20(10): 2220–2225

    Article  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3): 339–360

    Article  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121–167

    Article  Google Scholar 

  • Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293(2): H1023–H1030

    Article  Google Scholar 

  • Yokota H, Goldring MB, Sun HB (2003) CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem 278(47): 47275–47280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Tarbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarbell, J.M., Shi, ZD. Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech Model Mechanobiol 12, 111–121 (2013). https://doi.org/10.1007/s10237-012-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0385-8

Keywords

Navigation