Skip to main content
Log in

Evaluating the nucleus effect on the dynamic indentation behavior of cells

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The effect of the nucleus on the cell mechanical behavior was investigated based on the dynamic indentation response of cells under a spherical tip. A “two-component” cell model (including cytoplasm and nucleus) is used, and the dynamic indentation behavior is studied by a semiempirical method, which is established based on fitting the numerical simulation results of the quasi-static indentation response of cells. We found that the “routine analysis” (based on the Hertz’s contact solution of homogeneous model) significantly overestimated the nucleus effect on the overall cell indentation response due to the effects of the Hertz contact radius and the substrate stiffening. These effects are significantly stronger in the “two-component” cell model than in the homogeneous model. The inaccuracy created by the “routine analysis” slightly increases with the modulus ratio of nucleus to cytoplasm and the volume fraction of nucleus. Finally, the error sensitivity to the geometrical parameters used in the model is discussed, which shows the indentation analysis is not very sensitive to these parameters, and the reasonable assumptions for these parameters are effective. This systematic analysis can provide a useful guideline to understanding the mechanical behavior of cells and nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bursa J, Lebis R et al (2006) FE models of stress-strain states in vascular smooth muscle cell. Technol Health Care 14(4–5): 311–320

    Google Scholar 

  • Caille N, Tardy Y et al (1998) Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann Biomed Eng 26(3): 409–416

    Article  Google Scholar 

  • Caille N, Thoumine O et al (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35: 177–187

    Article  Google Scholar 

  • Callies C, Schön P et al (2009) Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy. Nanotechnology 20: 175104

    Article  Google Scholar 

  • Cao GX, Chandra N (2010) Evaluation of biological cell properties using dynamic indentation measurement. Phys Rev E 81(2): 021924

    Article  Google Scholar 

  • Carl P, Schillers H (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch Eur J Physiol 457: 551–559

    Article  Google Scholar 

  • Cross SE, Jin Y et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2: 780–783

    Article  Google Scholar 

  • Dahl KN, Engler AJ et al (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys J 89(4): 2855–2864

    Article  Google Scholar 

  • Darling EM, Topel M et al (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41(2): 454–464

    Article  Google Scholar 

  • Deguchi S, Maeda K et al (2005) Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J Biomech 38: 1751–1759

    Article  Google Scholar 

  • Deguchi S, Yano M et al (2007) Assessment of the mechanical properties of the nucleus inside a spherical endothelial cell based on microtensile testing. J Mech Mater Struct 2(6): 1087–1102

    Article  Google Scholar 

  • Dimitriadis EK, Horkay F et al (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5): 2798–2810

    Article  Google Scholar 

  • Dong C, Skalak R et al (1991) Cytoplasmic rheology of passive neutrophils. Biorheology 28(6): 557–567

    Google Scholar 

  • Ferko MC, Bhatnagar A et al (2007) Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann Biomed Eng 35(2): 208–223

    Article  Google Scholar 

  • Guilak F, Tedrow JR et al (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269: 781–786

    Article  Google Scholar 

  • Gupta S, Carrillo F et al (2005) Simulated soft tissue nanoindentation: a finite element study. J Mater Res 20(8): 1979–1994

    Article  Google Scholar 

  • Hansen JC, Lim JY et al (2006) Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. J Biomech 40: 2865–2871

    Article  Google Scholar 

  • Herbert EG, Oliver WC et al (2008) Nanoindentation and the dynamic characterization of viscoelastic solids. J Phys D Appl Phys 41(7): 074021

    Article  Google Scholar 

  • Jean RP, Chen CS et al (2005) Finite-element analysis of the adhesion-cytoskeleton-nucieus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J Biomech Eng Trans ASME 127(4): 594–600

    Article  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kang I, Panneerselvam D et al (2008) Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-alpha. Biophys J 94(8): 3273–3285

    Article  Google Scholar 

  • Karcher H, Lammerding J et al (2003) A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys J 85(5): 3336–3349

    Article  Google Scholar 

  • Kuznetsova TG, Starodubtseva MN et al (2007) Atomic force microscopy probing of cell elasticity. Micron 38(8): 824–833

    Article  Google Scholar 

  • Lammerding J, Dahl KN et al (2007) Nuclear mechanics and methods. Cell Mech 83: 269–294

    Article  Google Scholar 

  • Leipzig ND, Athanasiou KA (2008) Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys J 94(6): 2412–2422

    Article  Google Scholar 

  • Lim CT, Zhou EH et al (2006) Mechanical models for living cells—a review. J Biomech 39: 195–216

    Article  Google Scholar 

  • Lu YB, Franze K et al (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A 103(47): 17759–17764

    Article  Google Scholar 

  • Lulevich V, Zink R et al (2006) Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 22: 8151–8155

    Article  Google Scholar 

  • Mahaffy RE, Park S et al (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3): 1777–1793

    Article  Google Scholar 

  • Mahaffy RE, Shih CK et al (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85(4): 880–883

    Article  Google Scholar 

  • Maniotis AJ, Chen CS et al (1997) Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94(3): 849–854

    Article  Google Scholar 

  • Odegard GM, Gates T et al (2005) Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp Mech 45(2): 130–136

    Article  Google Scholar 

  • Ofek G, Natoli RM et al (2009) In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J Biomech 42(7): 873–877

    Article  Google Scholar 

  • Ohashi T, Ishii Y et al (2002) Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Bio-Med Mater Eng 12(3): 319–327

    Google Scholar 

  • Pajerowski JD, Dahl KN et al (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A 104(40): 15619–15624

    Article  Google Scholar 

  • Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83: 347–372

    Article  Google Scholar 

  • Rico F, Roca-Cusachs P et al (2005) Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E Stat Nonlin Soft Matter Phys 72(2 Pt 1): 021914

    Article  Google Scholar 

  • Rowat AC, Lammerding J et al (2008) Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 30(3): 226–236

    Article  Google Scholar 

  • Rowat AC, Lammerding J et al (2006) Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 91(12): 4649–4664

    Article  Google Scholar 

  • Tseng Y, Lee JSH et al (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117(10): 2159–2167

    Article  Google Scholar 

  • Vaziri A, Lee H et al (2006) Deformation of the cell nucleus under indentation: mechanics and mechanisms. J Mater Res 21(8): 2126–2135

    Article  Google Scholar 

  • Vaziri A, Mofrad MRK (2007) Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech 40(9): 2053–2062

    Article  Google Scholar 

  • White CC, Vanlandingham MR et al (2005) Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J Polym Sci Part B Polym Phys 43(14): 1812–1824

    Article  Google Scholar 

  • Zhang CY, Zhang YW (2007) Effects of membrane pre-stress and intrinsic viscoelasticity on nanoindentation of cells using AFM. Philos Mag 87(23): 3415–3435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, G., Sui, J. & Sun, S. Evaluating the nucleus effect on the dynamic indentation behavior of cells. Biomech Model Mechanobiol 12, 55–66 (2013). https://doi.org/10.1007/s10237-012-0381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0381-z

Keywords

Navigation