Skip to main content

Advertisement

Log in

Matrix compliance and RhoA direct the differentiation of mammary progenitor cells

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The regenerative capacity of the mammary gland following post-lactational involution depends on the presence of multipotent stem or progenitor cells. Mammary progenitor cells exist as a quiescent and self-renewing population capable of differentiating into luminal epithelial and myoepithelial cells and generating ductal and alveolar structures. The fate choices of these cells are regulated by several soluble signals as well as their surrounding extracellular matrix. Whereas matrix stiffness has been implicated in organ-specific differentiation of embryonic and mesenchymal stem cells, the effects of substratum compliance on the more limited fate switches typical of tissue-specific progenitor cells are unknown. Here, we examined how the mechanical properties of the microenvironment affect the differentiation of mammary progenitor cells. Immortalized human mammary progenitor cells were cultured on synthetic hydrogels of varying stiffness, and their self-renewal and fate decisions were quantified. We found that cells cultured on soft substrata differentiated preferentially into luminal epithelial cells, whereas those cultured on stiff substrata differentiated preferentially into myoepithelial cells. Furthermore, pharmacological manipulations of cytoskeletal tension in conjunction with analysis of gene expression revealed that mechanical properties of the microenvironment signal through the small GTPase RhoA and cytoskeletal contractility to modulate the differentiation of mammary progenitor cells. These data suggest that subtle variations in the mechanical compliance of a tissue can direct the fate decisions of its resident progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

ES:

Embryonic stem

FAK:

Focal adhesion kinase

MLCK:

Myosin light chain kinase

MSCs:

Mesenchymal stem cells

PA:

Polyacrylamide

ROCK:

Rho-associated kinase

TDLU:

Terminal ductal lobular unit

References

  • Alcaraz J, Xu R, Mori H, Nelson CM, Mroue R, Spencer VA, Brownfield D, Radisky DC, Bustamante C, Bissell MJ (2008) Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J 27(21): 2829–2838

    Article  Google Scholar 

  • Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE [electronic resource]: signal transduction knowledge environment (119)

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by rho-associated kinase (rho-kinase). J Biol Chem 271(34): 20246–20249. doi:10.1074/jbc.271.34.20246

    Article  Google Scholar 

  • Anderson LH, Boulanger CA, Smith GH, Carmeliet P, Watson CJ (2011) Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland. Dev Dyn 240(3): 674–681. doi:10.1002/dvdy.22539

    Article  Google Scholar 

  • Batistatou A, Stefanou D, Arkoumani E, Agnantis NJ (2003) The usefulness of p63 as a marker of breast myoepithelial cells. In Vivo 17(6): 573–576

    Google Scholar 

  • Beningo KA, Dembo M, Kaverina I, Small JV, Wang Y-l (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4): 881–888. doi:10.1083/jcb.153.4.881

    Article  Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19(1): 677–695. doi:10.1146/annurev.cellbio.19.111301.153011

    Article  Google Scholar 

  • Boudou T, Ohayon J, Picart C, Tracqui P (2006) An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology 43(6): 721–728

    Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1): 95–105

    Article  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6(6): R605–615

    Article  Google Scholar 

  • Emerman JT, Burwen SJ, Pitelka DR (1979) Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell 11(1): 109–119

    Article  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4): 677–689. doi:10.1016/j.cell.2006.06.044

    Article  Google Scholar 

  • Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18: 1–13 (discussion 13–14)

    Google Scholar 

  • Eyckmans J, Boudou T, Yu X, Chen CS (2011) A hitchhiker’s guide to mechanobiology. Dev Cell 21(1): 35–47

    Article  Google Scholar 

  • Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol Camb 2(9): 424–434

    Article  Google Scholar 

  • Gjorevski N, Nelson CM (2011) Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12: 581–593

    Article  Google Scholar 

  • Ingber DE (2004) The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst MCB 1(1): 53–68

    Google Scholar 

  • Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusetani N, Watabe S, Hashimoto K, Uemura D et al (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159(3): 871–877

    Article  Google Scholar 

  • Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404(2–3): 118–124. doi:10.1016/s0014-5793(97)00107-5

    Article  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase). Science 273(5272): 245–248. doi:10.1126/science.273.5272.245

    Article  Google Scholar 

  • Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7(6): e1000121

    Article  Google Scholar 

  • LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, Petersen OW, Bissell MJ (2009) Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol 1: 70–79

    Article  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139: 891–906

    Article  Google Scholar 

  • Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE (2010) Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 12(2): R21

    Article  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12): 6063–6071

    Article  Google Scholar 

  • Lorenzen J, Sinkus R, Biesterfeldt M, Adam G (2003) Menstrual-cycle dependence of breast parenchyma elasticity: estimation with magnetic resonance elastography of breast tissue during the menstrual cycle. Invest Radiol 38(4): 236–240. doi:10.1097/01.RLI.0000059544.18910.BD

    Google Scholar 

  • Lorenzen J, Sinkus R, Lorenzen M, Dargatz M, Leussler C, Roschmann P, Adam G (2002) MR elastography of the breast:preliminary clinical results. Rofo 174(7): 830–834. doi:10.1055/s-2002-32690

    Article  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4): 483–495. doi:10.1016/s1534-5807(04)00075-9

    Article  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1): 56–68

    Article  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3): 241–254

    Article  Google Scholar 

  • Pelham RJ, Wang Y-l (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25): 13661–13665

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147

    Article  Google Scholar 

  • Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52(6): 1565–1576

    Article  Google Scholar 

  • Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12): a005066

    Article  Google Scholar 

  • Srivastava A, Verma Y, Rao KD, Gupta PK (2011) Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain 47: 75–87

    Article  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98(2): 137–146

    Article  Google Scholar 

  • Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299(5613): 1743–1747

    Article  Google Scholar 

  • Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, Fassler R, Thiery JP, Glukhova MA (2008) Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 10(6): 716–722

    Article  Google Scholar 

  • Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling ascade by cytoskeleton stretch. Dev Cell 7(5): 709–718. doi:10.1016/j.devcel.2004.08.021

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391): 1145–1147

    Article  Google Scholar 

  • Tiede B, Kang Y (2011) From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 21(2): 245–257

    Article  Google Scholar 

  • Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1): 87–101

    Article  Google Scholar 

  • Visvader JE, Smith GH (2011) Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol 3(2): a004879

    Article  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118(Pt 16): 3585–3594. doi:10.1242/jcs.02532

    Article  Google Scholar 

  • Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3): 583–595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, C., Lee, K. & Nelson, C.M. Matrix compliance and RhoA direct the differentiation of mammary progenitor cells. Biomech Model Mechanobiol 11, 1241–1249 (2012). https://doi.org/10.1007/s10237-011-0362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0362-7

Keywords

Navigation