Skip to main content
Log in

ISOFIT: a model-based method to measure muscle–tendon properties simultaneously

Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Summary

Estimation of muscle parameters specifying force–length and force–velocity behavior requires in general a large number of sophisticated experiments often including a combination of isometric, isokinetic, isotonic, and quick-release experiments. This study validates a simpler method (ISOFIT) to determine muscle properties by fitting a Hill-type muscle model to a set of isovelocity data. Muscle properties resulting from the ISOFIT method agreed well with muscle properties determined separately in in vitro measurements using frog semitendinosus muscles. The force–length curve was described well by the results of the model. The force–velocity curve resulting from the model coincided with the experimentally determined curve above approximately 20% of maximum isometric force (correlation coefficient R>0.99). At lower forces and thus higher velocities the predicted curve underestimated velocity. The stiffness of the series elastic component determined with direct experiments was approximately 10% lower than that determined by the ISOFIT method. Use of the ISOFIT method can decrease experimental time up to 80% and reduce potential changes in muscle parameters due to fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Askew GN, Marsh RL (1998) Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length–force effects and velocity-dependent activation and deactivation. J Exp Biol 201:1527–1540

    CAS  PubMed  Google Scholar 

  • Barclay CJ (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497:781–794

    CAS  PubMed  Google Scholar 

  • Bobbert M (2001) Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study. J Exp Biol 204:533–542

    CAS  PubMed  Google Scholar 

  • van den Bogert AJ, Gerritsen KG, Cole GK (1998) Human muscle modelling from a user’s perspective. J Electromyogr Kinesiol 8:119–124

    Article  PubMed  Google Scholar 

  • Buchanan CI, Marsh RL (2001) Effects of long-term exercise on the biomechanical properties of the Achilles tendon of guinea fowl. J Appl Physiol 90(1):164–171

    CAS  PubMed  Google Scholar 

  • Chow JA, Darling WG (1999) The maximum shortening velocity of muscle should be scaled with activation. J Appl Physiol 86(3):1025–1031

    CAS  PubMed  Google Scholar 

  • Curtin NA, Gardner-Medwin AR, Woledge RC (1998) Predictions of the time course of force and power output by dogfish white muscle fibres during brief tetani. J Exp Biol 201:103–114

    CAS  PubMed  Google Scholar 

  • Dimery NJ, Alexander RM (1985) Muscle and sarcomere length in the hind limb of rabbit (Oryctolagus cuniculus) during a galloping stride. J Zool Lond 205:373–383

    Google Scholar 

  • Edman KA, Caputo C, Lou F (1993) Depression of tetanic force induced by loaded shortening of frog muscle fibres. J Physiol 466:535–552

    CAS  PubMed  Google Scholar 

  • Epstein M, Herzog W (1998) Theoretical models of skeletal muscle. Chichester, Wiley

    Google Scholar 

  • Ettema GJ, Huijing PA (1989) Properties of the tendinous structures and series elastic component of EDL muscle-tendon complex of the rat. J Biomech 22(11–12):1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Ettema GJ, van Soest AJ, Huijing PA (1990) The role of series elastic structures in prestretch-induced work enhancement during isotonic and isokinetic contractions. J Exp Biol 154:121–136

    CAS  PubMed  Google Scholar 

  • Fischer MS (1999) Kinematics, EMG, and inverse dynamics of the therian forelimb—a synthetic approach. Zool Anz 238:41–54

    Google Scholar 

  • Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002). Basic limb kinematics of small therian mammals. J Exp Biol 205:1315–1338

    PubMed  Google Scholar 

  • Giesl P, Meisel D, Scheurle J, Wagner H (2004) Stability analysis of the elbow with a load. J Theor Biol 228:115–125

    Article  PubMed  MathSciNet  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170–192

    CAS  PubMed  Google Scholar 

  • de Haan A, Jones DA, Sargeant AJ (1989) Changes in velocity of shortening, power output and relaxation rate during fatigue of rat medial gastrocnemius muscle. Pflugers Arch 413(4):422–428

    Article  PubMed  Google Scholar 

  • Hatze H (1977) A Myocybernetic Control Model of Skeletal Muscle. Biol Cybern 25:103–119

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B Lond 126:136–195

    Google Scholar 

  • Jewell BR, Wilkie DR (1960) The mechanical properties of relaxing muscle. J Physiol 152:30–47

    CAS  PubMed  Google Scholar 

  • Katz B (1939) The relation between force and speed in muscular contraction. J Physiol 96:45–64

    Google Scholar 

  • Lieber RL, Frieden J (2000) Intraoperative sarcomere length measurements reveal musculoskeletal design principles. In: Winter JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, Berlin Heidelberg New York, pp 58–72

    Google Scholar 

  • Lieber RL, Leonard ME, Brown CG, Trestik CL (1991) Frog semitendinosis tendon load- strain and stress-strain properties during passive loading. Am J Physiol 261:C86–C92

    CAS  PubMed  Google Scholar 

  • Meijer K, Grootenboer HJ, Koopman HF, van der Linden BJ, Huijing PA (1998) A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects. J Biomech 31(6):555–563

    Article  CAS  PubMed  Google Scholar 

  • Morgan DL (1977) Separation of active and passive components of short-range stiffness of muscle. Am J Physiol 232(1):C45–C49

    CAS  PubMed  Google Scholar 

  • Nigg BM (1994) Modelling. In: Nigg BM, Herzog W (eds) Biomechanics of the musculo-skeletal system. Wiley, Chichester, pp 365–567

    Google Scholar 

  • Peplowski MM, Marsh RL (1997) Work and power output in the hindlimb muscles of Cuban tree frogs Osteopilus septentrionalis during jumping. J Exp Biol 200(22):2861–2870

    CAS  PubMed  Google Scholar 

  • Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott F, Freadman M (1988) Why animals have different muscle fibre types. Nature 335(6193):824–827

    Article  CAS  PubMed  Google Scholar 

  • Sandercock TG, Heckman CJ (2001) Whole muscle length-tension properties vary with recruitment and rate modulation in areflexive cat soleus. J Neurophysiol 85(3):1033–1038

    CAS  PubMed  Google Scholar 

  • Siebert T, Meier P, Blickhan R (2001) Properties of rat m. triceps brachii under locomotion-like conditions. Motion Systems 2001, Jena, Shaker, Aachen

  • Siebert T, Wagner H, Blickhan R (2003a) Not all oscillations are rubbish: forward simulation of quick-release experiments. J of Mech Med Biol 3(1):107–122

    Article  Google Scholar 

  • Siebert T, Wagner H, Blickhan R (2003b) Veränderung von Muskel-Sehneneigenschaften während zyklischer Muskelkontraktionen. In: Brüggemann GP, Morey-Klapsing G (eds) Biologische systeme—mechanische eigenschaften und ihre adaptation bei körperlicher Belastung. Czawlina Verlag, Hamburg 135:111–116

  • Sust M (1978) Biomechanische Aspekte der Definition von Maximal- und Schnellkraft. Theorie und Praxis der Körperkultur 27:763–768

    Google Scholar 

  • Sust M (1996) Modular aufgebaute deterministische Modelle zur Beschreibung menschlicher Bewegungen. In: Ballreich R, Baumann W (eds) Grundlagen der Biomechanik des Sports. Ferdinant Enke Verlag, Suttgart

  • Sust M, Schmalz T, Linnenbecker S (1997) Relationship between distribution of muscle fibres and invariables of motion. Hum Mov Sci 16:533–546

    Article  Google Scholar 

  • Van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69:195–204

    Article  PubMed  Google Scholar 

  • Wagner H, Blickhan R (2003) Stabilizing function of antagonistic neuromusculoskeletal systems—an analytical investigation. Biol Cybern 89:71–79

    PubMed  Google Scholar 

  • Woittiez RD, Huijing PA, Boom HB, Rozendal RH (1984) A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles. J Morphol 182(1):95–113

    Article  CAS  PubMed  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    CAS  PubMed  Google Scholar 

  • Zuurbier CJ, Everard AJ, van der Wees P, Huijing PA (1994) Length–force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition. J Biomech 27(4):445–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the DFG (INK A22/A1-A3) and NIH grant AR-47337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, H., Siebert, T., Ellerby, D.J. et al. ISOFIT: a model-based method to measure muscle–tendon properties simultaneously. Biomech Model Mechanobiol 4, 10–19 (2005). https://doi.org/10.1007/s10237-005-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-005-0068-9

Keywords

Navigation