Skip to main content
Log in

Mass transport in a thin layer of power-law mud under surface waves

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Becker JM, Bercovici D (2000) Permanent bed forms in a theoretical model of wave–sea-bed interactions. Nolinear Process Geophys 7:31–35

    Article  Google Scholar 

  • Bercovci D, Beck JM (2001) Pattern formation on the interface of a two-layer fluid: bi-viscous lower layer. Wave Motion 34(1):431–452

    Google Scholar 

  • Chan IC, Liu PLF (2009) Responses of Bingham-plastic muddy seabed to a surface solitary wave. J Fluid Mech 92:14581–14594

    Google Scholar 

  • Dalrymple RA, Liu P (1978) Waves over soft muds: a two-layer model. J Phys Oceanogr 8:1121–1131

    Article  Google Scholar 

  • Hsu WY, Hwung HH (2013) An experimental and numerical investigation on wave-mud interactions. OJ Geophys Res: Oceans 118:1126–1141

    Article  Google Scholar 

  • Hu Y, Guo X, Dalarymple RA (2012) Idealized numerical simulation of breaking water wave propagating over a viscous mud layer. Phys Fluid 24(11):1–20

    Article  Google Scholar 

  • Huang X, Garcia MH (1998) A Herschel–Bulkley model for mud flow down a slope. J Fluid Mech 374:305–333

    Article  Google Scholar 

  • Jain M, Mehta AJ (2009) Role of basic rheological models in determination of wave attenuation over muddy sea beds. Conti Shelf Res 29(3):642–651

    Article  Google Scholar 

  • Jiang F (1993) Bottom mud transport due to water waves. PhD thesis, University of Florida, Gainesville, America

  • Jiang Q, Akira W (1996) Analysis of mud mass transport under waves using an empirical rheological model. In: 25th conference on coastal engineering. Orlando, Florida, pp. 4174–4187

    Google Scholar 

  • Liu CR, Wu B (2014) A Bingham–plastic model for fluid mud transport under waves and currents. China. Ocean Eng 28(2):227–238

    Article  Google Scholar 

  • Liu J, Bai YCH (2016) Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system. J Hydrodyn 28(1):66–74

    Article  Google Scholar 

  • Liu PLF, Chan IC (2007a) On long propagation over a fluid-mud seabed. J Fluid Mech 579:467–480

    Article  Google Scholar 

  • Liu PLF, Chan IC (2007b) A note on the effects of a thin visco-elastic mud layer on small amplitude water-wave propagation. Coast Eng 54:233–247

    Article  Google Scholar 

  • Longuet-higgins MS (1953) Mass transport in water waves. Philos Trans R Soc 245:535–581

  • Macpherson H (1980) The attenuation of water waves over non-rigid bed. J Fluid Mech 96:721–742

    Article  Google Scholar 

  • Mei CC, Liu KF (1987) A Bingham-plastic model for a muddy seabed under long waves. J Geophys Res 92(C13):14581–14594

    Article  Google Scholar 

  • Ng C-O (2000) Water waves over a muddy bed: a two-layer stokes boundary layer model. Coast Eng 40(3):221–242

    Article  Google Scholar 

  • Ng C-O (2004a) Mass transport in a layer of power-law fluid forced by periodic surface pressure. Wave Motion 39(3):241–259

    Article  Google Scholar 

  • Ng C-O (2004b) Mass transport in gravity waves revisited. J Geophys Res 109(C4):249–260

    Article  Google Scholar 

  • Ng C-O (2004c) Mass transport and set-ups due to partial standing surface waves in a two-layer viscous system. J Fluid Mech 520:297–325

    Article  Google Scholar 

  • Ng C-O, Bai YCH (2002) Rheological properties and incipient motion of cohesive sediment in the Haihe Estuary of China. China Ocean Eng 16(4):483–498

  • Niu XJ, Yu XP (2008) Visco-elastic-plastic model for muddy seabed. J Tsinghua Univ (Science & Technology) 48(9):1417–1421 (in Chinese)

    Google Scholar 

  • Niu XJ, Yu XP (2014) Numerical study on wave propagation over a fluid-mud layer with different bottom conditions. Ocean Dyn 64:293–300

    Article  Google Scholar 

  • Pang Q X (2011) Formation and motion characteristics of fluid mud and counter measurements. PhD thesis, TianJin University, Tianjin, China (in Chinese)

  • Piedra-Cueva I (1993) On the response of a muddy bottom to surface water waves. J Hydraul Res 31:681–696

    Article  Google Scholar 

  • Pierson WJ (1962) Perturbation analysis of the Navier–Stokes equations in Lagrangian form with selected linear solutions. J Geophys Res 67(8):3151–3160

    Article  Google Scholar 

  • Qi P, Hou YJ (2006) Mud mass transport due to waves based on an empirical model rheology model featured by hysteresis loop. Ocean Eng 33(16):2195–2208

    Article  Google Scholar 

  • Sakakiyama T, Bijker EW (1989) Mass transport velocity in mud layer due to progressive waves. J Waterw Port Coast Ocean Eng 115(4):614–633

    Article  Google Scholar 

  • Soltanpour M, Shibayama T (2014) A two-dimensional experimental numerical approach to investigate wave transformation over muddy beds. Ocean Dyn 65:295–310

    Article  Google Scholar 

  • Tian Q (2010) The research on properties and motions of mud in estuary. PhD thesis, TianJin University, Tianjin, China (in Chinese)

  • Unluata U, Mei CC (1970) Mass transport in water waves. J Geophys Res 75:7611–7618

    Article  Google Scholar 

  • Wen J, Liu PLF (1995) Mass transport of interfacial waves in a two-layer fluid system. J Fluid Mech 297:231–254

    Article  Google Scholar 

  • Xia YZ, Zhu KQ (2010) A study of wave attenuation over a Maxwell model of a muddy bottom. Wave Motion 47(8):601–615

    Article  Google Scholar 

  • Xia YZ, Zhu KQ (2011) On a fractional-order Maxwell model of seabed mud and its effect to surface wave damping. Appl Maths Mech 32(11):1357–1366

    Article  Google Scholar 

  • Xia YZ, Zhu KQ (2012) The propagation of a solitary wave over seabed mud of the Voigt model. Science China 55(1):108–117

    Google Scholar 

  • Xia YZ (2014) The attenuation of shallow-water waves over seabed mud of a stratified viscoelastic model. Coast Eng 56(4):1–32

    Google Scholar 

  • Xu D, Bai YC, Ji CN, Williams J (2015) Experimental study of the density influence on the incipient motion and erosion modes of muds in unidirectional flows: the case of Huangmaohai Estuary. Ocean Dyn 65(2):187–201

    Article  Google Scholar 

  • Yang WY, Yu GL, Tan SK (2014) Rheological properties of dense natural cohesive sediments subject to shear loadings. Inter J Sedi Res 29:454–470

    Article  Google Scholar 

  • Zhang XY, Ng C-O (2007) Mass transport in water waves over a thin layer of soft viscoelastic mud. J Fluid Mech 573:105–130

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewer and responsible editor whose comments greatly improved the quality of this paper. We acknowledge the Natural Science Foundation of China (Grant No. 41576093), the Natural Science Foundation of Tianjin (Grant No. 15JCYBJC21900), and open Research Funds from the State Key laboratory of Hydraulic Engineering Simulation and Safety (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchuan Bai.

Additional information

Responsible Editor: Han Winterwerp

Appendices

Appendix 1

1.1 Numerical solutions

1.1.1 The first-order problem

Equation (56) is a non-linear differential equation, which has to be solved numerically. It is known that \( {\widehat{u}}_f^{(1)} \) is 2π-periodic inξ, namely \( {\widehat{u}}_f^{(1)}\left(\xi \right)={\widehat{u}}_f^{(1)}\left(\xi +2\pi \right) \), which means it is sufficient to find a solution in the computational domain 0 ≤ ξ ≤ 2π and \( -1\le \widehat{z}\le 0 \). A pseudo-transient iterative method is adopted, and the pseudo-time step Δt is introduced to adjust the iteration progression and to improve the quality of the convergence and calculation. Thus, the following diffusion equations are obtained for the upper and the lower layer, respectively

$$ \frac{-{\widehat{u}}_w^{(1)\left(c+1\right)}+{\widehat{u}}_w^{(1)(c)}}{\varDelta t}+{\lambda}_w^2{\left|\frac{\partial {\widehat{u}}_w^{(1)(c)}}{\partial \widehat{z}}\right|}^{n_w-1}\frac{\partial^2{\widehat{u}}_w^{(1)\left(c+1\right)}}{\partial {\widehat{z}}^2}+\frac{\partial {\widehat{u}}_w^{(1)(c)}}{\partial \xi }=-\frac{1}{Fr}{\widehat{p}}_s \sin \xi $$
(74)
$$ \frac{-{\widehat{u}}_m^{(1)\left(c+1\right)}+{\widehat{u}}_m^{(1)(c)}}{\varDelta t}+{\lambda}_m^2{\left|\frac{\partial {\widehat{u}}_m^{(1)(c)}}{\partial \widehat{z}}\right|}^{n_m-1}\frac{\partial^2{\widehat{u}}_m^{(1)\left(c+1\right)}}{\partial {\widehat{z}}^2}+\frac{\partial {\widehat{u}}_m^{(1)(c)}}{\partial \xi }=-\frac{\kern0.1em {\rho}_w\kern0.1em }{\rho_m}\frac{{\widehat{p}}_s}{Fr} \sin \xi $$
(75)

where \( {\widehat{u}}_c^{(1)} \) is the cth iteration of the solution.

The standard second-order implicit central-difference scheme is used to discretize these equations. The computational domain is discretized into a uniform mesh of N × N = 201 × 201 grid points, as shown in Fig. 10.

Fig. 10
figure 10

Sketch of the mesh grids

The discretization of the governing formulations yields

$$ \begin{array}{l}\frac{1}{\Delta {\mathrm{z}}^2}{\widehat{u}}_{a,b+1}^{(1)\left(c+1\right)}-\left(\frac{2}{\Delta {\mathrm{z}}^2}+\frac{1}{\varDelta t{\lambda}_w^2}\right){\widehat{u}}_{a,b}^{(1)\left(c+1\right)}+\frac{1}{\Delta {\mathrm{z}}^2}{\widehat{u}}_{a,b-1}^{(1)\left(c+1\right)}\\ {}=\frac{1}{\lambda_w^2}\left(-\left(\frac{1}{2\varDelta \xi}\left({\widehat{u}}_{a+1,b}^{(1)(c)}-{\widehat{u}}_{a-1,b}^{(1)(c)}\right)\right)-\frac{{\widehat{p}}_s}{Fr} \sin \left[\left(a-1\right)\varDelta \xi \right]-\frac{1}{\varDelta t}{\widehat{u}}_{a,b}^{(1)(c)}\right)\end{array} $$
(76)
$$ \begin{array}{l}\frac{1}{\Delta {\mathrm{z}}^2}{\widehat{u}}_{a,b+1}^{(1)\left(c+1\right)}-\left(\frac{2}{\Delta {\mathrm{z}}^2}+\frac{1}{\varDelta t{\lambda}_m^2}{\left|\frac{1}{2\Delta \mathrm{z}}\right|}^{1-{n}_m}{\left|{\widehat{u}}_{a,b+1}^{(1)(c)}-{\widehat{u}}_{a,b-1}^{(1)(c)}\right|}^{1-{n}_m}\right){\widehat{u}}_{a,b}^{(1)\left(c+1\right)}\\ {}+\frac{1}{\Delta {\mathrm{z}}^2}{\widehat{u}}_{a,b-1}^{(1)\left(c+1\right)}=\frac{1}{\lambda_m^2}{\left|\frac{1}{2\Delta \mathrm{z}}\right|}^{1-{n}_m}{\left|{\widehat{u}}_{a,b+1}^{(1)(c)}-{\widehat{u}}_{a,b-1}^{(1)(c)}\right|}^{1-{n}_m}\\ {}\cdot \left(-\left(\frac{1}{2\varDelta \xi}\left({\widehat{u}}_{a+1,b}^{(1)(c)}-{\widehat{u}}_{a-1,b}^{(1)(c)}\right)\right)-\frac{\rho_w\kern0.1em }{\rho_m}\frac{{\widehat{p}}_s}{Fr} \sin \left(\left(a-1\right)\varDelta \xi \right)-{\widehat{u}}_{a,b}^{(1)(c)}\right)\end{array} $$
(77)

where a, b = 1, 2, …, N. The computational domain is divided into 200 grid cells, with a spacing of Δξ = 2π/(N − 1) in the x-direction and Δz = 1/(N − 1) in the z-direction, respectively.

On the free water surface (a = 1, 2, …, N; b = N ), the dynamic condition yields

$$ {\widehat{u}}_{\mathrm{a},N}^{(1)\left(c+1\right)}-{\widehat{u}}_{\mathrm{a},N-1}^{(1)\left(c+1\right)}=0 $$
(78)

Along the upper/lower fluid interface (a = 1, 2, …, N; b = (N-1)/2 + 1), the normal stress is continuous

$$ {\lambda}_w^2{\rho}_w\frac{1}{\Delta \mathrm{z}}{\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(1)\left(c+1\right)}-\left({\lambda}_w^2{\rho}_w\frac{1}{\Delta \mathrm{z}}+{\lambda}_m^2{\rho}_m{\left|\frac{1}{2}\right|}^{1-{n}_m}{\left|\frac{1}{\Delta \mathrm{z}}\right|}^{2-{n}_m}{\left|{\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(1)(c)}-{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(1)(c)}\right|}^{1-{n}_m}\right){\widehat{u}}_{\mathrm{a},\mathrm{b}}^{(1)\left(c+1\right)}+{\lambda}_m^2{\rho}_m{\left|\frac{1}{2}\right|}^{1-{n}_m}{\left|\frac{1}{\Delta \mathrm{z}}\right|}^{2-{n}_m}{\left|{\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(1)(c)}-{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(1)(c)}\right|}^{1-{n}_m}{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(1)\left(c+1\right)}=0 $$
(79)

At the grid bottom (i = 1, 2, …, N; j = 1), the horizontal velocity equal zero

$$ {\widehat{u}}_{\mathrm{i},1}^{(1)\left(c+1\right)}=0 $$
(80)

The numerical calculation has six input parameters: n f , ρ f , \( {\widehat{h}}_f \), \( {\lambda}_f^2 \), Fr, and \( {\widehat{p}}_s \). We are here primarily interested in examining the effects of power-law flow index n m and the pressure load \( {\widehat{p}}_s \) on the flow field and mass transport velocity. For the upper water layer, the flow index n w  = 1.0; thus, we only consider the value of n m . To make the comparison clear, the following values of n m have been selected in turn: 1.0, 0.9,…, 0.4, 0.3. The analytical solutions for the case n f  = 1.0 (Ng 2004a) are used to provide an initial guess values for the iteration of solutions. When the maximum relative change between two consecutive iterates falls below 10−4, the iteration will be ended.

It is known from Eq. (27) that the value of \( {\lambda}_w^2/{\lambda}_m^2 \) depends on the ratio of the square of the Stokes boundary layer thickness in the upper-layer water (\( {\delta}_{ws}^2 \)) to that in the lower-layer viscous fluid (\( {\delta}_{ms}^2 \)), and the higher value of \( {\delta}_{ms}^2 \) corresponds to a highly viscous fluid. According to the rheological experiments (Hsu and Hwung 2013; Sakakiyama and Bijker 1989; Tian 2010; Pang 2011), muds of viscosity vary over a wide range. Referring to the related literatures (Piedra-Cueva 1995; Ng 2004c), \( {\lambda}_w^2/{\lambda}_m^2=1/50 \) and ρ w /ρ m  = 0.77 have been adopted in the calculations. The values of other inputs have been fixed as follows: \( {\widehat{h}}_w \) = 0.8, \( {\widehat{h}}_m \) = 0.2, Fr = 1.0, and \( {\widehat{p}}_s \) = 1.0 and 2.0. The flowchart of the numerical solution procedures is shown in Fig. 11.

Fig. 11
figure 11

Flowchart of the numerical solution procedures

The accuracy of the computer codes has been examined by comparing numerical with analytical solutions for the Newtonian case, as shown in Fig. 4.

1.1.2 The second-order problem

Similar to the first-order problem, the discrete governing equations for the second-order problem can be obtained from Eqs. (69) to (70)

$$ \begin{array}{l}\frac{1}{2\varDelta \xi}\left({\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(2)}-{\widehat{u}}_{i-1,j}^{(2)}\right)+{\lambda}_w^2\frac{1}{\Delta {\mathrm{z}}^2}\left({\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(2)}-2{\widehat{u}}_{\mathrm{a},\mathrm{b}}^{(2)}+{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(2)}\right)\\ {}={\widehat{u}}_{\mathrm{a},\mathrm{b}}^{(1)}\left(\frac{1}{2\varDelta \xi}\left({\widehat{u}}_{\mathrm{a}+1,\mathrm{b}}^{(1)}-{\widehat{u}}_{i-1,j}^{(1)}\right)\right)+{\widehat{w}}_{\mathrm{a},\mathrm{b}}^{(1)}\left(\frac{1}{2\varDelta z}\left({\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(1)}-{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(1)}\right)\right)\end{array} $$
(81)
$$ \frac{1}{2\varDelta \xi}\left({\widehat{u}}_{\mathrm{a}+1,\mathrm{b}}^{(2)}-{\widehat{u}}_{\mathrm{a}-1,\mathrm{b}}^{(2)}\right)+{\lambda}_m^2{n}_m{2}^{1-{n}_m}{\left|\frac{1}{\varDelta z}\right|}^{n_m+1}{\left|{\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(1)}-{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(1)}\right|}^{n_m-1}\left({\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(2)}-2{\widehat{u}}_{\mathrm{a},\mathrm{b}}^{(2)}+{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(2)}\right)=\frac{1}{2\varDelta \xi }{\widehat{u}}_{\mathrm{a},\mathrm{b}}^{(1)}\left({\widehat{u}}_{\mathrm{a}+1,\mathrm{b}}^{(1)}-{\widehat{u}}_{\mathrm{a}-1,\mathrm{b}}^{(1)}\right)+\frac{1}{2\varDelta z}{\widehat{w}}_{\mathrm{a},\mathrm{b}}^{(1)}\left({\widehat{u}}_{\mathrm{a},\mathrm{b}+1}^{(1)}-{\widehat{u}}_{\mathrm{a},\mathrm{b}-1}^{(1)}\right) $$
(82)

On the free water surface (a = 1, 2,…, N; b = N), the dynamic condition yields

$$ {\widehat{u}}_{(2)}^{\mathrm{i},N}-{\widehat{u}}_{(2)}^{\mathrm{i},N-1}=0 $$
(83)

Along the interface (a = 1, 2, …, N; b = (N − 1)/2 + 1), the normal stress is continuous

$$ \begin{array}{l}{\lambda}_w^2{\rho}_w\frac{1}{\Delta \mathrm{z}}{\widehat{u}}_{\mathrm{a},b+1}^{(2)}-\left({\lambda}_w^2{\rho}_w\frac{1}{\Delta \mathrm{z}}+{\lambda}_m^2{\rho}_m{n}_m{\left(\frac{1}{2}\right)}^{1-{n}_m}{\left|\frac{1}{\Delta \mathrm{z}}\right|}^{1-{n}_m}{\left|{\widehat{u}}_{\mathrm{a},b+1}^{(1)}-{\widehat{u}}_{\mathrm{a},b-1}^{(1)}\right|}^{1-{n}_m}\right){\widehat{u}}_{\mathrm{a},b}^{(2)}\\ {}+{\lambda}_m^2{\rho}_m{n}_m{\left(\frac{1}{2}\right)}^{1-{n}_m}{\left|\frac{1}{\Delta \mathrm{z}}\right|}^{2-{n}_m}{\left|{\widehat{u}}_{\mathrm{a},b+1}^{(1)}-{\widehat{u}}_{\mathrm{a},b-1}^{(1)}\right|}^{1-{n}_m}{\widehat{u}}_{\mathrm{a},b-1}^{(2)}=0\end{array} $$
(84)

At the fixed grid bottom (a = 1, 2, …, N; b = 1), the horizontal velocities are zero

$$ {\widehat{u}}_{\mathrm{a},1}^{(2)}=0 $$
(85)

The numerical calculation results of the first-order problem are used to solve the second-order problem. Because Eqs. (79)–(80) are linear, an improved chasing method has been developed to calculate the five-diagonal sparse matrix.

Appendix 2

f :

\( \left\{{}_{m\kern0.7em for\kern0.4em \mathrm{muddy}\kern0.24em \mathrm{fluid}\kern0.35em \mathrm{in}\kern0.5em -{h}_m<\kern0.3em z<0}^{w\kern0.7em for\kern0.2em \mathrm{water}\kern0.3em \mathrm{in}\kern0.5em 0\kern0.4em <\kern0.4em z\kern0.4em <\kern0.4em {h}_w}\right. \)

η f :

Displacement on the free surface or on the interface

h f :

Depth of water or mud layer

h :

Total thickness of water and mud

ρ f :

Density of water or mud

u f :

Horizontal component of velocity of water or mud

w f :

Vertical components of velocity of water or mud

p f :

The pressure of water or mud

p :

External periodic pressure

p s :

Amplitude of the external periodic pressure

x :

Horizontal coordinate

z :

Vertical coordinate

k :

Wave number

g :

Gravitational acceleration

n f :

Flow index of power-law model

L :

Wavelength

Fr :

Froude number

u L :

Mass transport velocity

N :

Grid points

1.1 Greek letters

σ:

Angular frequency

τ fij :

Stress component of water or mud

μf :

Dynamic viscosity of water or mud

γ fij :

Shear rate

γ f :

Shearing stress amplitude

ε :

Wave steepness

\( {\lambda}_f^2 \) :

Parameter derived from dimensionless equations

δ fs :

Stokes boundary layer thickness

ξ :

Phase position

Δξ :

Grid spacing in horizontal coordinate

Δz :

Grid spacing in vertical coordinate

Δt :

Pseudo-time step

Q f :

The net discharge rate in the water or in the mud layers

1.2 Subscripts

(1):

First order

(2):

Second order

i, j :

Equals x or z

E :

Eulerian coordinate

L :

Lagrangian coordinate

S :

Stokes drift

a:

Grid position in horizontal coordinate

b:

Grid position in vertical coordinate

c:

Iteration step

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Bai, Y. & Xu, D. Mass transport in a thin layer of power-law mud under surface waves. Ocean Dynamics 67, 237–251 (2017). https://doi.org/10.1007/s10236-016-1027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-1027-y

Keywords

Navigation