Skip to main content
Log in

Experimental investigation on statistical properties of wave heights and crests in crossing sea conditions

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Some theoretical and numerical studies highlighted that the occurrence of rogue waves could increase in the presence of crossing sea. This sea state is characterized by the coexistence of two wave systems with different directions of propagations and is considered one of the most common causes of ship accidents in bad weather conditions. In particular, the angle between the two interacting wavetrains, Δθ, was found to be an important parameter that could lead to an enhanced probability of extreme events. We present an experimental investigation on wave heights and crest for surface elevation mechanically generated in different crossing sea conditions (10° < Δθ < 40°). The results of statistical analysis confirm that the probability of extreme events increases with the angle between the two systems, but does not exceed the values of the unidirectional case, which also presents waves with greater heights. Moreover, the correlation between the heights, crests, and troughs of consecutive waves assumes higher values for the case of 40°, when compared to the unidirectional case: this could mean that it is easier to find waves of the same height within a packet in the conditions Δθ = 40° with respect to the unidirectional or other Δθ conditions considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akmediev N, Pelinovsky E (2010) Discussion and debate: rogue waves—towards a unifying concept? Eur Phys J 185:1–266

    Google Scholar 

  • Arhan M, Ezraty R (1978) Statistical relations between successive wave heights. Ocean Acta 1:151–158

    Google Scholar 

  • Benjamin BT, Feir JE (1967) The disintegration of wave train on deep water. J Fluid Mech 27:417–430

    Article  Google Scholar 

  • Bitner-Gregersen EM, Toffoli A (2014) Occurrence of rogue sea state and consequences for marine structures. Ocean Dyn 64:1457–1468

    Article  Google Scholar 

  • Bona JL, Saut JC (1993) Dispersive blowup of solutions of generalized Korteweg-de Vries equations. J Differ Equ 103(1):3–57

    Article  Google Scholar 

  • Cavaleri L, Bertotti L, Torrisi L, Bitner-Gregersen EM, Serio M, Onorato M (2012) Rogue Waves in crossing seas: the Louis Majesty accident. J Geophy Res 117(C11)

  • Cherneva Z, Guedes Soares C (2011) Evolution of wave properties during propagation in a ship towing tank and an offshore basin. Ocean Eng 38:2254–2261. doi:10.1016/j.oceaneng.2011.10.009

    Article  Google Scholar 

  • Christou M, Ewans KC (2011) Examining a comprehensive data set containing thousands of freak wave events. Part 2 – Analysis and findings. Proceedings of OMAE 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. 19–24 June, 2011, Rotterdam, The Netherlands

  • Dattatri J, Raman H, Jothishankar N (1977) Wave groups: analysis of run and run length. In: Proceedings of the 6th Australasian Hydraulics Fluid Mechanics Conference, Adelaide

  • Donelan MA, Magnusson AK (2005) The role of meteorological focusing in generating rogue wave conditions. Proc. 14th Winther’Aha Huliko’a, Univ. Hawaii, USA

  • Donelan MA, Drennan WM, Magnusson AK (1996) Nonstationary analysis of the directional properties of propagating waves. J Phys Oceanogr 26:1901–1914

    Article  Google Scholar 

  • Dysthe K, Krogstad HE, Müller P (2008) Oceanic rogue waves. Annu Rev Fluid Mech 40:287–310. doi:10.1146/annurev.fluid.40.111406.102203

    Article  Google Scholar 

  • Galchenko A, Babanin AV, Chalikov D, Young IR, Hsu TW (2010) Modulational instabilities and breaking strength for deep-water wave groups. J Phys Oceanogr 40:2313–2324. doi:10.1175/2010JPO4405.1

    Article  Google Scholar 

  • Galchenko A, Babanin AV, Chalikov D, Young IR, Haus BK (2012) Influence of wind forcing on modulation and breaking of one-dimensional deep-water wave groups. J Phys Oceanogr 42:928–939. doi:10.1175/JPO-D-11-083.1

    Article  Google Scholar 

  • Goda Y (1983) Analysis of wave grouping and spectra of long-travelled swell. Rept Port Harb Res Inst 22:3–41

    Google Scholar 

  • Gramstad O, Trulsen K (2007) Influence of crest and group length on the occurrence of freak waves. J Fluid Mech 582:463. doi:10.1017/S0022112007006507

    Article  Google Scholar 

  • Gramstad O, Trulsen K (2010) Can swell increase the number of freak waves in a wind sea? J Fluid Mech 650:57. doi:10.1017/S0022112009993491

    Article  Google Scholar 

  • Greenslade D (2001) A wave modelling study of the 1998 Sydney to Hobart yacht race. Aust Meteorol Mag 50:53–63

    Google Scholar 

  • Gründlingh ML (1994) Evidence of surface wave enhancement in the southwest Indian Ocean from satellite altimetry. J Geophys Res Oceans (1978–2012) 99(C4):7917–7927

    Article  Google Scholar 

  • Guedes Soares C (1984) Representation of double-peaked sea wave spectra. Ocean Eng 11:185–207. doi:10.1016/0029-8018(84)90019-2

    Article  Google Scholar 

  • Guedes Soares C (1991) On the occurrence of double peaked wave spectra. Ocean Eng 18:167–171

    Article  Google Scholar 

  • Haver S (2004) A possible freak wave event measured at the Draupner jacket January 1 1995. Rogue Waves 2004:1–8

    Google Scholar 

  • Janssen PAEM (2003) Nonlinear four-wave interactions and freak waves. J Phys Oceanogr 33:863–884

    Article  Google Scholar 

  • Janssen PAEM (2009) On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J Fluid Mech 637:1–44. doi:10.1017/S0022112009008131

    Article  Google Scholar 

  • Jayewardane I (1987) Analysis of some bimodal spectra and the reproduction of these spectra in thelaboratory. In: Proceedings of the 2nd International Conference on Coastal and Port Engineering inDeveloping Countries, Beijing, China. COPEDEC, pp. 2046–2056

  • Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech-B/Fluids 22(6):603–634

    Article  Google Scholar 

  • Kimura A (1980) Statistical properties of random wave groups. Coast Eng Proc 1:2955–2973

    Google Scholar 

  • Komen G, Cavaleri L, Donelan M, Hasselmann K, Hasselmann H, Janssen PAEM (1994) Dynamics and modeling of ocean waves. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Lavrenov IV (1998) The wave energy concentration at the Agulhas current off South Africa. Nat Hazards 17(2):117–127

    Article  Google Scholar 

  • Lavrenov IV (2003) Wind-waves in oceans: dynamics and numerical simulations. Springer

  • Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Marine Res 11:1245–1266

    Google Scholar 

  • Longuet-Higgins MS (1963) The effect of non-linearities on statistical distributions in the theory of sea waves. J Fluid Mech 17:459–480

    Article  Google Scholar 

  • Longuet-Higgins MS (1984) Statistical properties of wave groups in a random sea state. Philos T Roy Soc A 312(1521):219–250

    Article  Google Scholar 

  • Magnusson AK, Donelan MA, Drennan WM (1999) On estimating extremes in an evolving wave field. Coast Eng 36(2):147–163

    Article  Google Scholar 

  • Mori N, Janssen PAEM (2006) On kurtosis and occurrence probability of freak waves. J Phys Oceanogr 36:1471–1483

    Article  Google Scholar 

  • Mori M, Onorato M, Janssen PAEM, Osborne AR, Serio M (2007) On the extreme statistics of long-crested deep water waves: theory and experiments. J Geophys Res 112(C09011). doi:10.1029/2006JC004024

  • Mori N, Onorato M, Janssen PAEM (2011) On the estimation of the kurtosis in directional sea states for freak wave forecasting. J Phys Oceanogr 41:1484–1497. doi:10.1175/2011JPO4542.1

    Article  Google Scholar 

  • Muller P, Garrett C, Osborne AR (2005) Rogue waves. Oceanography 18(3):66

    Article  Google Scholar 

  • Nikolkina I, Didenkulova I (2011) Catalogue of rogue waves reported in media in 2006–2010. Natural Hazards 1–18

  • Onorato M, Osborne AR, Serio M, Bertone S (2001) Freak waves in random oceanic sea states. Phys Rev Lett 86:5831

    Article  Google Scholar 

  • Onorato M, Osborne AR, Serio M (2002) Extreme wave events in directional, random oceanic sea state. Phys Fluids 14:L25–L28

    Article  Google Scholar 

  • Onorato M, Osborne AR, Serio M, Cavaleri L (2005) Modulational instability and non-Gaussian statistics in experimental random water-wave trains. Phys Fluids 17(7):078101

    Article  Google Scholar 

  • Onorato M, Osborne AR, Serio M (2006) Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys Rev Lett 96(1):014503

    Article  Google Scholar 

  • Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstadt O, Janssen PAEM, Kinoshita T, Monbaliu J, Mori N, Osborne AR, Serio M, Stansberg CT, Tamura H, Trulsen K (2009a) Statistical properties of directional ocean waves: the role of modulational instability in the formation of extreme events. Phys Rev Lett 102(11):114502

    Article  Google Scholar 

  • Onorato M, Cavaleri L, Fouques S, Gramstad O, Janssen PAEM, Monbaliu J, Osborne AR, Pakozdi C, Serio M, Stansberg C, Toffoli A, Trulsen K (2009b) Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3d wave basin. J Fluid Mech 627:235–257

    Article  Google Scholar 

  • Onorato M, Proment D, Toffoli A (2010) Freak waves in crossing seas. Eur Phys J 185:45–55. doi:10.1140/epjst/e2010-01237-8

    Google Scholar 

  • Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT (2013) Rogue waves and their generating mechanisms in different physical contexts. Phys Rep. doi:10.1016/j.physrep.2013.03.001

    Google Scholar 

  • Pelinovsky E, Talipova T, Kurkin A, Kharif C (2001) Nonlinear mechanism of tsunami wave generation by atmospheric disturbances. Nat Hazards Earth Syst Sci 1(4):243–250

    Article  Google Scholar 

  • Roberts AJ (1983) Highly nonlinear short-crested water waves. J Fluid Mech 135:301–321. doi:10.1017/S0022112083003092

    Article  Google Scholar 

  • Rodríguez GR, Guedes Soares C (2001) Correlation between successive wave heights and periods in mixed sea states. Ocean Eng 28:1009–1030

    Article  Google Scholar 

  • Rodríguez GR, Guedes Soares C, Ferrer L (2000) Wave group statistics of numerically simulated mixed sea states. J Offshore Mech Arct Eng 122:282–288

    Article  Google Scholar 

  • Rye H (1974) Wave group formation among storm waves. In: Coastal Eng. Proceedings

  • Sobey RJ (1996) Correlation between individual waves in a real sea state. Coast Eng 27:223–242. doi:10.1016/0378-3839(96)00010-5

    Article  Google Scholar 

  • Socquet-Juglard H, Dysthe K, Trulsen K, Krogstad HE, Liu J (2005) Distribution of surface gravity waves during spectral changes. J Fluid Mech 542:195–216

    Article  Google Scholar 

  • Su MY, Bergin MT, Bales SL (1982) Characteristics of wave groups in storm seas. In: Proceedings Ocean Structural Dynamics Symposium

  • Tayfun MA (1980) Narrow-band nonlinear sea waves. J Geophys Res 85:1548–1552

    Article  Google Scholar 

  • Toffoli A, Onorato M, Monbaliu J (2006) Wave statistics in unimodal and bimodal seas from a second-order model. Eur J Mech B/Fluids 25:649–661. doi:10.1016/j.euromechflu.2006.01.003

    Article  Google Scholar 

  • Toffoli A, Bitner-Gregersen EM, Osborne AR, Serio M, Monbaliu J, Onorato M (2011) Extreme waves in random crossing seas: Laboratory experiments and numerical simulations. Geoph Res Lett 38. doi:10.1029/2011GL046827

  • White BS, Fornberg B (1998) On the chance of freak waves at sea. J Fluid Mech 355:113–138

    Article  Google Scholar 

  • Wist HT, Myrhaug D, Rue H (2004) Statistical properties of successive wave heights and successive wave periods. Appl Ocean Res 26:114–136. doi:10.1016/j.apor.2005.01.002

    Article  Google Scholar 

  • Young IR (1995) The determination of confidence limits associated with estimates of spectral peak frequency. Ocean Eng 22(7):669–686

    Article  Google Scholar 

  • Zakharov VE, Ostrovsky LA (2009) Modulation instability: the beginning. Phys D Nonlinear Phenom 238:540–548. doi:10.1016/j.physd.2008.12.002

    Article  Google Scholar 

  • Zakharov VE, Dyachenko AI, Prokofiev AO (2006) Freak waves as nonlinear stage of Stokes wave modulation instability. Eur J Mech B/Fluids 25(5):677–692

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Ruari McIver, Alan McDonald, Mike Heath, and Miguel Onorato for their valuable suggestions and always fruitful discussions. We wish also to acknowledge both of the anonymous reviewers that greatly improved the paper.

M.S. was supported by the EU, project EXTREME SEAS (SCP8-GA-2009-234175) and also by the Ministero dell’Istruzione, dell’Università e della Ricerca (Italy). A.D.S was supported by the University of Strathclyde, Scottish Environmental Protection Agency (SEPA) and Marine Scotland Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D. Sabatino.

Additional information

Responsible Editor: Bruno Castelle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, A.D., Serio, M. Experimental investigation on statistical properties of wave heights and crests in crossing sea conditions. Ocean Dynamics 65, 707–720 (2015). https://doi.org/10.1007/s10236-015-0831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0831-0

Keywords

Navigation