Skip to main content

Advertisement

Log in

Influence of the back-barrier basin length on the geometry of ebb-tidal deltas

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The characteristics of ebb-tidal deltas are determined by the local hydrodynamics. The latter depend, among others, on the geometry of the adjacent back-barrier basin. Therefore, interventions in the back-barrier basin can affect the geometry of ebb-tidal deltas. In this study, the effect of the length of the back-barrier basin on the sand volume and spatial symmetry of ebb-tidal deltas is quantified with the use of a numerical model. It is found that the length of the back-barrier basin affects the tidal prism, the amplitude and phase of the primary tide and its overtides, and the residual currents that, together, determine the sand volume of the ebb-tidal delta. In particular, it is found that no unique relationship exists between tidal prism and sand volume of an ebb-tidal delta. The spatial symmetry of ebb-tidal deltas is also found to be affected by the length of the back-barrier basin. This is because the basin length determines the phase difference between alongshore and cross-shore tidal currents. The numerical model results give a possible explanation for the changes that are observed in the geometry of the ebb-tidal deltas that are located seaward of the Texel Inlet and Vlie Inlet after the closure of the Zuiderzee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aubrey DG (1986) Physics of shallow estuaries and bays, Lecture notes on coastal and estuarine studies, vol 16, AGU, chap Hydrodynamic controls on sediment transport in well-mixed bays and estuaries, pp 245–258

  • Biegel E, Hoekstra P (1995) Morphological response characteristics of the Zoutkamperlaag. Blackwell Publishing Ltd, Frisian inlet (The Netherlands) to a sudden reduction in basin area, in Tidal Signatures in Modern and Ancient Sediments

    Google Scholar 

  • Buijsman MC, Ridderinkhof H (2007) Long-term ferry-adcp observations of tidal currents in the marsdiep inlet. J Sea Res 57(4):237–256. doi:10.1016/j.seares.2006.11.004

    Article  Google Scholar 

  • Cayocca F (2001) Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France. Coast Eng 42(2):115–142. doi:10.1016/S0378-3839(00)00053-3

    Article  Google Scholar 

  • Davis RA, Fitzgerald DM (2004) Beaches and coasts. Blackwell Science Ltd

  • De Swart HE, Zimmerman JTF (2009) Morphodynamics of tidal inlet systems. Ann Rev Fluid Mech 41(1):203–229. doi:10.1146/annurev.fluid.010908.165159

    Article  Google Scholar 

  • Dissanayake DMPK, Roelvink JA, van der Wegen M (2009) Modelled channel patterns in a schematized tidal inlet. Coast Eng 56(11–12):1069–1083. doi:10.1016/j.coastaleng.2009.08.008

    Article  Google Scholar 

  • Dissanayake DMPK, Ranasinghe R, Roelvink J (2012) The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim Chang 113:253–276. doi:10.1007/s10584-012-0402-z

    Article  Google Scholar 

  • Elias E, Van der Spek AJF, Wang ZB, De Ronde J (2012) Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Neth J Geosci - Geologie en Mijnbouw 91(3):293–310

    Google Scholar 

  • Elias EPL, Stive MJF, Roelvink JA (2005) Impact of back-barrier changes on ebb-tidal delta evolution. J Coastal Res SI 42:460–476

    Google Scholar 

  • Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial channels. Teknik Forlag, Copenhagen

    Google Scholar 

  • Escoffier FF (1940) The stability of tidal inlets. Shore and Beach:114–115

  • Gibeaut JC, Davis RA (1993) Statistical geomorphic classification of ebb-tidal delta along the west-central Florida coast. J Coastal Res S1(18):165–184

    Google Scholar 

  • Hayes MO (1975) Estuarine Research, vol II, chap Morphology of sand accumulation in estuaries: An introduction to the symposium. Academic Press, New York, pp 3–22

    Google Scholar 

  • Hayes MO (1980) General morphology and sediment patterns in tidal inlets. Sediment Geol 26:139–156

    Article  Google Scholar 

  • van Leeuwen SM, van der Vegt M, de Swart HE (2003) Morphodynamics of ebb-tidal deltas: a model approach. Estuarine. Coast Shelf Sci 57(5–6):899–907. doi:10.1016/S0272-7714(02)00420-1

    Article  Google Scholar 

  • Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8–9):883–915. doi:10.1016/j.coastaleng.2004.07.014

    Article  Google Scholar 

  • Lorentz HA (1926) Verslag Staatscommissie Zuiderzee 1918-1926. Algemeene Landsdrukkerij,’s Gravenhage

  • Nahon A, Bertin X, Fortunato AB, Oliveira A (2012) Process-based 2dh morphodynamic modeling of tidal inlets: a comparison with empirical classifications and theories. Mar Geol 291:1–11. doi:10.1016/j.margeo.2011.10.001

    Article  Google Scholar 

  • Oertel GF (1975) Estuarine Research, vol II. Academic Press, New York, chap Ebb-Tidal Deltas of Georgia Estuaries, pp 267–276

    Google Scholar 

  • Oertel GF (1988) Hydrodynamics and Sediment Dynamics of Tidal Inlets., vol 29, chap Processes of sediment exchange between tidal inlets, ebb deltas and barrier islands, pp. 297–318. Springer-Verlag

  • Oost AP, de Boer PL (1994) Sedimentology and development of barrier islands, ebb-tidal deltas, inlets and backbarrier areas of the dutch waddensea. Senckenb Marit 24:65–115

    Google Scholar 

  • Powell MA, Thieke RJ, Mehta AJ (2006) Morphdynamic relationships for ebb and flood delta volumes at Florida’s tidal entrances. Ocean Dyn 56:295–307. doi:10.1007/s10236-006-0064-3

    Article  Google Scholar 

  • van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications

  • van Rijn L C (2007) Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. J Hydraul Eng 133(6):649–667. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  • Roelvink J A (2006) Coastal morphodynamic evolution techniques. Coast Eng 53(2–3):277–287. doi:10.1016/j.coastaleng.2005.10.015

    Article  Google Scholar 

  • Sha LP (1989) Sand transport patterns in the ebb-tidal delta off Texel inlet, Wadden Sea, the Netherlands. Mar Geol 86:137–154

    Article  Google Scholar 

  • Sha LP, Van den Berg JH (1993) Variation in ebb-tidal delta geometry along the coast of the Netherlands and the German Bight. J Coast Res 9(3):730–746

    Google Scholar 

  • Speer PE, Aubrey DG (1985) A study of non-linear tidal propagation in shallow inlet/estuarine systems part II: Theory. Estuarine. Coast Shelf Sci 21(2):207–224. doi:10.1016/0272-7714(85)90097-6

    Article  Google Scholar 

  • van Veen J (1936) Onderzoekingen in de hoofden. Algemeene Landsdrukkerij, ’s Gravenhage

  • van der Vegt M, Schuttelaars H M, de Swart H E (2009) The influence of tidal currents on the asymmetry of tide-dominated ebb–tidal deltas. Cont Shelf Res 29(1):159–174. doi:10.1016/j.csr.2008.01.018

    Article  Google Scholar 

  • Walton TL, Adams WD (1976) Capacity of inlet outer bars to store sand. Coast Eng:1919–1937

  • Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, De Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57. doi:10.1016/j.ocecoaman.2011.12.022

    Article  Google Scholar 

  • van der Wegen M, Roelvink JA (2008) Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J Geophys Res 113(C3):C03,016. doi:10.1029/2006JC003983

    Google Scholar 

  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34(10):1284–1306. doi:10.1016/j.cageo.2008.02.012

    Article  Google Scholar 

  • Zimmerman JTF (1992) On the Lorentz linearization of a nonlinearly damped tidal Helmholtz oscillator. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 95(1):127–145

    Google Scholar 

Download references

Acknowledgments

We are grateful to Rijkswaterstaat for making their bathymetric data publicly accessible (available through opendap.deltares.nl). Fig. 1e was produced with use of Open Earth Tools. This research was funded by the Netherlands Organization for Scientific Research (NWO), project number: BN000295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Ridderinkhof.

Additional information

Responsible Editor: Bob Chant

This article is part of the Topical Collection on Physics of Estuaries and Coastal Seas 2012

Appendix: A One-dimensional analytical model

Appendix: A One-dimensional analytical model

To gain insight into the effect of the length of a back-barrier basin on the hydrodynamics in a tidal inlet, a simple model was analyzed, which consists of the linearized shallow water equations for a configuration of two connected one-dimensional channels with a constant width, W n , and depth, H n (Fig. 10). The equations read

$$\begin{array}{@{}rcl@{}} \frac{\partial \tilde{v}_{n}}{\partial t} = -g \frac{\partial \tilde{\eta}_{n}}{\partial y} - \frac{\lambda_{n}}{H_{n}} \tilde{v}_{n}, \end{array} $$
(A.1)
$$\begin{array}{@{}rcl@{}} \frac{\partial \tilde{\eta}_{n}}{\partial t} + H_{n} \frac{\partial \tilde{v}_{n}}{\partial y} = 0, \end{array} $$
(A.2)

where n = 1 represents the tidal inlet and n = 2 the back-barrier basin, \( \tilde {v}\) is the along channel velocity, g is the acceleration due to gravity, \(\tilde {\eta }\) is the sea surface height, y is the horizontal coordinate, t is the time, and λ n is a linearized friction coefficient (Eqs. A.15 and A.16). These equations are solved by applying the following boundary conditions:

$$ \tilde{\eta}_{1} = \mathbb{R}\left(\hat{Z}e^{-i \sigma t}\right), {\kern4pc} \text{at } y = -L_{1}, \\ $$
(A.3)
$$ \tilde{\eta}_{1} = \tilde{\eta}_{2}, {\kern6.8pc} \text{at } y = 0,\\ $$
(A.4)
$$ W_{1}H_{1}\tilde{v}_{1} = W_{2}H_{2}\tilde{v}_{2}, {\kern2.7pc} \text{at } y = 0,\\ $$
(A.5)
$$ \tilde{v}_{2} = 0, {\kern7.2pc} \text{at } y = L_{2}. $$
(A.6)

These boundary conditions imply that at y=−L 1, \(\tilde {\eta }_{1}\) is forced by a harmonic variation in sea surface height; at y=0 there are two boundary conditions, viz. conservations of mass and continuity of \(\tilde {\eta }\). Finally, at y=L 2 the velocity \(\tilde {v}_{2}\) vanishes. Solutions for \(\tilde {\eta }_{n}(y,t)\) and \(\tilde {v}_{n}(y,t)\) that satisfies Eqs. A.1 and A.2 are of the type

$$ \tilde{\eta}_{n}(y,t) = \mathbb{R}\left(N_{n}(y)e^{-i\sigma t}\right), \\ $$
(A.7)
$$ \tilde{v}_{n}(y,t) = \mathbb{R}\left(V_{n}(y)e^{-i\sigma t}\right). $$
(A.8)

Following standard methods and using Eqs. A.3A.6 the following solutions are obtained:

$$ N_{1}(y) = \hat{Z} \frac{ \chi_{1}\cos(\kappa_{1} y)\cos(\kappa_{2} L_{2}) + \chi_{2}\sin(\kappa_{1} y)\sin(\kappa_{2} L_{2}) }{\chi_{1}\cos(\kappa_{1} L_{1})\cos(\kappa_{2} L_{2}) - \chi_{2}\sin(\kappa_{1} L_{1})\sin(\kappa_{2} L_{2})} ,\\ $$
(A.9)
$$ N_{2}(y) = \frac{1}{2}\hat{Z} \frac{\chi_{1} \left( e^{-i\kappa_{2}(y-L_{2})} + e^{i \left(\kappa_{1} y - \kappa_{2} L_{2}\right)}\right)}{\chi_{1}\cos(\kappa_{1} L_{1})\cos(\kappa_{2} L_{2}) - \chi_{2}\sin(\kappa_{1} L_{1})\sin(\kappa_{2} L_{2})} ,\\ $$
(A.10)
$$\begin{array}{@{}rcl@{}} V_{1}(y) &=& \left(\frac{g\hat{Z} \kappa_{1} H_{1}}{\lambda_{1} - i \sigma H_{1}} \right) \\&&\times \frac{ \chi_{1}\sin(\kappa_{1} y)\cos(\kappa_{2} L_{2}) - \chi_{2}\cos(\kappa_{1} y)\sin(\kappa_{2} L_{2}) }{\chi_{1}\cos(\kappa_{1} L_{1})\cos(\kappa_{2} L_{2}) - \chi_{2}\sin(\kappa_{1} L_{1})\sin(\kappa_{2} L_{2})} ,\\ \end{array} $$
(A.11)
$$\begin{array}{@{}rcl@{}} V_{2}(y)& =& \left(\frac{g\hat{Z} \kappa_{2} H_{2}}{i \sigma H_{2} -\lambda_{2}} \right)\\ &&\times\frac{ \chi_{1}\sin{(\kappa_{2} (L_{2} -y))}}{\chi_{1}\cos(\kappa_{1} L_{1})\cos(\kappa_{2} L_{2}) - \chi_{2}\sin(\kappa_{1} L_{1})\sin(\kappa_{2} L_{2})}.\\ \end{array} $$
(A.12)

Here κ n is the frictional wave number,

$$ \kappa_{n} = \sqrt{\frac{H_{n} \sigma^{2} + i\sigma\lambda_{n}}{g {{H^{2}_{n}}}}}, $$
(A.13)

and

$$ \chi_{n} = \frac{H_{n} W_{n} \kappa_{n}}{\left(\lambda_{n} / H_{n}\right) - i\sigma}. $$
(A.14)

In order to establish that the linearized bottom stress yields the correct tidally averaged dissipation of energy, the method of Lorentz (1926) (Zimmerman 1992) is applied. With this method λ n is determined recursively. New solutions for V n (x) and N n (x) are calculated until the values for λ n that were used to obtain the solutions are within 0.5 % of the \(\lambda _{n}^{*}\) that would give the correct tidally averaged dissipation of energy, i.e.:

$$ \lambda_{n}^{*} = \frac{8 c_{\text{D}}}{3\pi}\frac{{\int}^{L_{n}} |V_{n}(y,\lambda_{n})|^{3}dy}{{\int}^{L_{n}} |V_{n}(y,\lambda_{n})|^{2}dy}, \\ $$
(A.15)
$$ \left|\left(\frac{\lambda_{n}^{*}}{\lambda_{n}} - 1\right)\right| < 0.005, $$
(A.16)

where the drag coefficient, c D, is a constant parameter.

Fig. 10
figure 10

Domain of the analytical model

Since the tidal prism, P, in this model is given by

$$ P = \frac{1}{2}H_{1}W_{1}{{{\int}_{0}^{T}}}|\tilde{v}_{1}(-L_{1},t)|dt. $$
(A.17)

it follows from Eq. A.11 that

$$ P = \left|\frac{2 g \chi_{1} \hat{Z} }{\sigma} \frac{ \chi_{1}\sin(\kappa_{1}L_{1})\cos(\kappa_{2} L_{2}) + \chi_{2}\cos(\kappa_{1} L_{1})\sin(\kappa_{2} L_{2}) }{\chi_{1}\cos(\kappa_{1} L_{1})\cos(\kappa_{2} L_{2}) - \chi_{2}\sin(\kappa_{1} L_{1})\sin(\kappa_{2} L_{2})}\right|. $$
(A.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridderinkhof, W., de Swart, H.E., van der Vegt, M. et al. Influence of the back-barrier basin length on the geometry of ebb-tidal deltas. Ocean Dynamics 64, 1333–1348 (2014). https://doi.org/10.1007/s10236-014-0744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0744-3

Keywords

Navigation