Skip to main content
Log in

Sedimentation processes in silt-rich sediment systems

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Sediment found in China’s Yangtze and Yellow River systems is characterized by large silt fractions. In contrast to sand and clay, sedimentation and erosion behaviour of silt and silt–clay–sand mixtures is relatively unknown. Therefore, settling and consolidation behaviour of silt-rich sediment from these river systems is analysed under laboratory conditions in specially designed settling columns. Results show that a transition in consolidation behaviour occurs around clay contents of about 10 %, which is in analogy with the transition from non-cohesive to cohesive erosion behaviour. Above this threshold, sediment mixtures consolidate in a cohesive way, whereas for smaller clay percentages only weak cohesive behaviour occurs. The settling behaviour of silt-rich sediment is found to be in analogy with granular material at concentration below 150 g/l. Above 150–200 g/l, the material settles in a hindered settling regime where segregation is limited or even prevented. The results indicate that for modelling purposes, multiple sediment fractions need to be assessed in order to produce accurate modelling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ariathurai CR, Arulanandan K (1978) Erosion rates of cohesive soils. ASCE, J Hydraul Div 104(2):279–282

    Google Scholar 

  • Been K (1980) Stress-strain behaviour of a cohesive soil deposited under water. DPhil, University of Oxford.

  • Been K, Sills GC (1981) Self-weight consolidation of soft soils: an experimental and theoretical study. Geotechnique 31(4):519–535

    Article  Google Scholar 

  • Blewett J, McCarter WJ, Chrisp MT, Starss G (2001) Monitoring sedimentation of a clay slurry. Geotechnique 51(8):723–728

    Article  Google Scholar 

  • Bowden RK (1988) Compression behaviour and shear strength characteristics of a natural silty clay sedimented in the laboratory. Ph.D. thesis, Oxford University.

  • Carrier WD (2003) Goodbye, Hazen; Hello, Kozeny–Carman. J Geotech Geoenviron Eng 129(11):1054–1056

    Article  Google Scholar 

  • Chen J, Wang F, Xia X, Zhang L (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187(3–4):231–255

    Article  Google Scholar 

  • Cuthbertson A, Dong P, King S, Davies P (2008) Hindered settling velocity of cohesive/non-cohesive sediment mixtures. Coast Eng 55(12):1197–1208

    Article  Google Scholar 

  • Cuthbertson AJS, Dong P, Davies PA (2010) Non-equilibrium flocculation characteristics of fine-grained sediments in grid-generated turbulent flow. Coast Eng 57(4):447–460

    Article  Google Scholar 

  • Dai Q, Shan HX, Jia YG, Meng XM (2009) Laboratory study on the relationship between suspended sediment concentration and electrical conductivity, Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering College of Environmental Science and Engineering Qingdao, China

  • Dankers PJT (2006) On the hindered settling of suspensions and mud-sand mixtures. Ph.D. thesis, Delft University of Technology

  • Dankers PJT, Winterwerp JC (2007) Hindered settling of mud flocs: theory and validation. Cont Shelf Res 27(14):1893–1907

    Article  Google Scholar 

  • Floss R (1970) Vergleich der Verdichtungs- und Verformungseigenschaften unstetiger und stetiger Kiessanden hinsichtlich ihrer Eignung als ungebundenes Schuttmaterial in Strassenbau. Wissenschaftliche Berichtte der Bundesanstalt fur Strassenwesen, Heft, 9

    Google Scholar 

  • Geleynse N, Storms JEA, Walstra DR, Jagers HRA, Wang ZB, Stive MJF (2011) Controls on river delta formation; insights from numerical modelling. Earth Planet Sci Lett 302(1–2):217–226

    Article  Google Scholar 

  • Gibson RE, England GL, Hussey MJL (1967) The theory of one-dimensional consolidation of saturated clays. Geotechnique 17(3):261–273

    Article  Google Scholar 

  • Guo L, He Q (2011) Freshwater flocculation of suspended sediments in the Yangtze River, China. Ocean Dyn 61(2):371–386

    Article  Google Scholar 

  • He MC, Sun Y, Li XR, Yang ZF (2006) Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China). Chemosphere 65(3):365–374

    Article  Google Scholar 

  • Jacobs W (2011) Sand-mud erosion from a soil mechanical perspective. Ph.D. thesis, Delft University of Technology

  • Jin L, McNeil J, Lick W, Gailani J (2002) Effects of bentonite on the erosion rates of quartz particles. University of California: Mechanics and Environmental Engineers, Santa Barbara

    Google Scholar 

  • Krone RB (1962) Flume studies of the transport of sediment in estuarial shoaling processes. University of California, Berkeley

    Google Scholar 

  • Kuerbis R, Negussey D, Vaid YP (1988) Effect of gradation and fines content on the undrained response of sand. Hydraulic Fill Structures (GPS21):330–345.

  • Lambe TW, Whitman RV (1979) Soil Mechanics. SI Version, New York

    Google Scholar 

  • Le Hir P, Cayocca F, Waeles B (2011) Dynamics of sand and mud mixtures: a multiprocess-based modelling strategy. Cont Shelf Res 31(10, Supplement):S135–S149

    Article  Google Scholar 

  • Li YH, Hisayuki T, Yang TS, Chen JS (1984) The elemental composition of suspended particles from the Yellow and Yangtze Rivers. Geochim Cosmochim Acta 48(7):1561–1564

    Article  Google Scholar 

  • Manning AJ, Baugh JV, Spearman JR, Pidduck EL, Whitehouse RJS (2011) The settling dynamics of flocculating mud-sand mixtures: part 1: empirical algorithm development. Ocean Dyn 61(2–3):311–350

    Article  Google Scholar 

  • Manning AJ, Baugh JV, Spearman JR, Whitehouse RJS (2010) Flocculation settling characteristics of mud: sand mixtures. Ocean Dyn 60(2):237–253

    Article  Google Scholar 

  • Merckelbach LM (2000) Consolidation and strength evolution of soft mud layers. Ph.D. thesis, Delft University of Technology

  • Merckelbach LM, Kranenburg C, Winterwerp JC (2002) Strength modelling of consolidating mud beds. Proceedings in Marine Science. Elsevier, Amsterdam, pp 359–373

    Google Scholar 

  • Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25

    Article  Google Scholar 

  • Montserrat F, Van Colen C, Provoost P, Milla M, Ponti M, Van den Meersche K, Ysebaert T, Herman PMJ (2009) Sediment segregation by biodiffusing bivalves. Estuarine Coastal Shelf Sci 83(4):379–391

    Article  Google Scholar 

  • Panagiotopoulos I, Voulgaris G, Collins MB (1997) The influence of clay on the threshold of movement of fine sandy beds. Coast Eng 32(1):19–43

    Article  Google Scholar 

  • Partheniades E (1962) A study of erosion and deposition of cohesive soils in salt water. Ph.D. thesis, University of California

  • Ren ME, Shi YL (1986) Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Cont Shelf Res 6(6):785–810

    Article  Google Scholar 

  • Richardson JF, Zaki WN (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem Eng Sci 3(2):65–73

    Article  Google Scholar 

  • Roberts J, Jepsen R, Gotthard D (1998) Effects of particle size and bulk density on erosion of quartz particles. J Hydraul Eng 124:1261

    Article  Google Scholar 

  • Sanford LP (2008) Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring. Comput Geosci 34(10):1263–1283

    Article  Google Scholar 

  • Shields A (1936) Anwendung der Ahnlichkeits Mechanik und der Turbulenzforschung auf die Geschiebe Bewegung: Preuss. Versuchanstalt fur Wasserbau und Schiffbau, Berlin, 20 p

    Google Scholar 

  • Shiming W, Anchun L, Kehui X, Xueming Y (2008) Characteristics of clay minerals in the Northern South China Sea and its implications for evolution of East Asian Monsoon since Miocene. J China Univ Geosci 19(1):23–37

    Article  Google Scholar 

  • Sorensen JA, Glass GE (1987) Ion and temperature dependence of electrical conductance for natural waters. Anal Chem 59:1594–1597

    Article  Google Scholar 

  • Terzaghi K, Frohlich OK (eds) (1936) Theorie der Setzung von Tonschichten; eine Einführung in die analytische Tonmechanik. Franz Deuticke, Leipzig

    Google Scholar 

  • Torfs H, Mitchener H, Huysentruyt H, Toorman E (1996) Settling and consolidation of mud/sand mixtures. Coast Eng 29(1–2):27–45

    Article  Google Scholar 

  • Van Ledden M, Van Kesteren WGM, Winterwerp JC (2004) A conceptual framework for the erosion behaviour of sand–mud mixtures. Cont Shelf Res 24(1):1–11

    Article  Google Scholar 

  • Van Maren D (2007) Grain size and sediment concentration effects on channel patterns of silt-laden rivers. Sediment Geol 202(1–2):297–316

    Article  Google Scholar 

  • Van Maren DS, Winterwerp JC, Wang ZY, Pu Q (2009a) Suspended sediment dynamics and morphodynamics in the Yellow River, China. Sedimentology 56(3):785–806

    Article  Google Scholar 

  • Van Maren DS, Winterwerp JC, Wu BS, Zhou JJ (2009b) Modelling hyperconcentrated flow in the Yellow River. Earth Surf Process Landforms 34(4):596–612

    Article  Google Scholar 

  • Van Maren DS, Yang SL, He Q (2013) The impact of silt trapping in large reservoirs on downstream morphology: the Yangtze River. Ocean Dyn. (in review)

  • Van Rijn LC (1984) Sediment transport, part i: bed load transport. J Hydraul Eng 110(10):1431–1456

    Article  Google Scholar 

  • Van Rijn LC (2007) Unified view of sediment transport by currents and waves. I: initiation of motion, bed roughness, and bed-load transport. J Hydraul Eng 133(6):649–667

    Article  Google Scholar 

  • Wan Z, Wang Z (1994) Hyperconcentrated Flow. IAHR monograph, Balkema: Rotterdam: 230.

  • Winterwerp J, Van Kesteren W (2004) Introduction to the physics of cohesive sediment in the marine environment. Elsevier, Amsterdam

  • Winterwerp JC (2001) Stratification of mud suspensions by buoyancy and flocculation effect. J Geophys Res 106(10):22

    Article  Google Scholar 

  • Wu B, Wang G, Ma J, Zhang R (2005a) Case study: river training and its effects on fluvial processes in the Lower Yellow River, China. J Hydraul Eng 131(2):85–96

    Article  Google Scholar 

  • Wu L, Huh Y, Qin J, Du G, van Der Lee S (2005b) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochim Cosmochim Acta 69(22):5279–5294

    Article  Google Scholar 

  • Xia XH, Yang ZF, Huang GH, Zhang XQ, Yu H, Rong X (2004) Nitrification in natural waters with high suspended-solid content. A study for the Yellow River. Chemosphere 57(8):1017–1029

    Article  Google Scholar 

  • Xu J (2007) Trends in suspended sediment grain size in the upper Yangtze River and its tributaries, as influenced by human activities. Hydrol Sci J 52(4):777–792

    Article  Google Scholar 

  • Xu K, Milliman JD, Li A, Paul Liu J, Kao S-J, Wan S (2009) Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Cont Shelf Res 29(18):2240–2256

    Article  Google Scholar 

  • Yang SY, Jung HS, Li CX (2004) Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sediment Geol 164(1–2):19–34

    Article  Google Scholar 

  • Zanke UCE (1997) Berechnung der Sinkgeschwindigkeiten von Sedimenten. Technical University, Hannover

    Google Scholar 

Download references

Acknowledgements

This work has been carried as part of the Sino–Dutch collaboration project ‘Effects of human activities on the eco-morphological evolution of rivers and estuaries’ funded by the Dutch Royal Academy of Sciences (KNAW) and is supported by the Natural Science Foundation of China (41130856) within the framework of Scientific Alliances between China and the Netherlands. Shi Benwei, Jin Can, Yuan Dailiang, Jiang Fengpei, Liu Jianhua, Zhao Jie, Zhu Lei, Pieter Leo, Yuan Lin, Richard de Reus, Christian Schwarz, Tian Xin, Ming Yang and Tom Ysebaert are acknowledged for their assistance during the fieldwork and laboratory experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven te Slaa.

Additional information

Responsible Editor: Andrew James Manning

This article is part of the Topical Collection on the 11th International Conference on Cohesive Sediment Transport

Rights and permissions

Reprints and permissions

About this article

Cite this article

te Slaa, S., He, Q., van Maren, D.S. et al. Sedimentation processes in silt-rich sediment systems. Ocean Dynamics 63, 399–421 (2013). https://doi.org/10.1007/s10236-013-0600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0600-x

Keywords

Navigation