Skip to main content
Log in

Effects of bottom slope, flocculation and hindered settling on the coupled dynamics of currents and suspended sediment in highly turbid estuaries, a simple model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This study aims at gaining basic understanding about two specific phenomena that are observed in the highly turbid estuaries tidal Ouse, Yangtze and Ems, i.e. (1) the accumulation of suspended matter in the deeper parts of the estuaries and (2) the relatively high values of turbidity near the surface in the area of the turbidity maximum. A semi-analytical model is analysed to verify the hypothesis that these phenomena result from bottom slope-induced turbidity currents and from hindered settling, respectively. The model governs the dynamics of residual flow, driven by fresh water discharge, salinity gradients and turbidity gradients. It further uses the condition of morphodynamic equilibrium (no divergence of net sediment transport) to compute the residual sediment concentration. New aspects are that depth variations on flow and mixing processes, as well as flocculation and hindered settling of sediment, are explicitly accounted for. Tides act as a source of mixing and erosion of sediment only, thus processes like tidal pumping are not considered. Model results show that the estuarine turbidity maximum (ETM) shifts in the down-slope direction, compared to the case of a constant depth. Slope-induced turbidity currents, which are directed down-slope near the bottom and up-slope near the surface, are responsible for this shift, thereby confirming the first part of the hypothesis above. The down-slope shift of the ETM is reduced by currents resulting from gradients in depth-dependent mixing, which counteract turbidity currents, but which are always weaker. Including flocculation and hindered settling yields increased surface sediment concentrations in the area of the turbidity maximum, compared to the situation of a constant settling velocity, thereby supporting the second part of the hypothesis. Sensitivity experiments reveal that the conclusions are not sensitive to the values of the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen GP, Salomon JC, Bassoullet P, Du Penhoat Y, De Grandpre C (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26(1–3):69–90

    Article  Google Scholar 

  • Bowden KF, Fairbairn LA (1952) A determination of the frictional forces in a tidal current. Proc R Soc Lond, A Math Phys Sci 214(1118):371–92

    Article  Google Scholar 

  • Brenon I, Le Hir P (1999) Modelling the turbidity maximum in the Seine estuary (France): identification of formation processes. Estuar, Coast Shelf Sci 49(4):525–544

    Article  Google Scholar 

  • Burchard H, Craig PD, Gemmrich JR, van Haren H, Mathieu PP, Meier HEM, Smith W, Prandke H, Rippeth TP, Skyllingstad ED, Smyth WD, Welsh DJS, Wijesekera HW (2008) Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing. Prog Oceanogr 76(4):399–442

    Article  Google Scholar 

  • Burchard H, Hetland RD, Schultz E, Schuttelaars HM (2011) Drivers of residual estuarine circulation in tidally energetic estuaries: straight and irrotational channels with parabolic cross section. J Phys Oceanogr 41: 548–570. doi:10.1175/2010JPO4453.1

    Article  Google Scholar 

  • Chernetsky AS, Schuttelaars HM, Talke SA (2010) The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60(5):1219–1241

    Article  Google Scholar 

  • Festa JF, Hansen DV (1978) Turbidity maxima in partially mixed estuaries: a two-dimensional numerical model. Estuar Coast Mar Sci 7:347–359

    Article  Google Scholar 

  • Friedrichs CT, Hamrick JH (1996) Effects of channel geometry on cross sectional variation in along channel in partially stratified estuaries. In: Aubrey DG, Friedrichs CT (eds) Buoyancy effects on coastal and estuarine dynamics, vol 53. American Geophysical Union, pp 283–300

  • Friedrichs CT, Armbrust BD, De Swart HE (1998) Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries. In: Dronkers J, Scheffers MBAM (eds) Physics of estuaries and coastal seas. Balkema, Rotterdam, pp 315–327

    Google Scholar 

  • Groen P (1967) On the residual transport of suspended matter by an alternating tidal current. Neth J Sea Res 3(4):564–574

    Article  Google Scholar 

  • Hansen DV, Rattray M (1965) Gravitational circulation in straits and estuaries. J Mar Res 23:104–122

    Google Scholar 

  • Huijts KMH, de Swart HE, Schramkowski GP, Schuttelaars HM (2011) Transverse structure of tidal and residual flow and sediment concentration in estuaries. Ocean Dyn 61(8): 1067–1091. doi:10.1007/s10236-011-0414-7

    Article  Google Scholar 

  • Jay DA, Musiak JD (1994) Particle trapping in estuarine tidal flows. J Geophys Res 99:445–461

    Article  Google Scholar 

  • Jiang C, Li J, de Swart, H E (2012) Effects of navigational works on morphological changes in the bar area of the Yangtze Estuary. Geomorphology 139–140: 205–219. doi:j.geomorph.2011.10.020

    Article  Google Scholar 

  • de Jonge VN (2000) Importance of temporal and spatial scales in applying biological and physical process knowledge in coastal management, an example for the Ems estuary. Cont Shelf Res 20:1655–1686

    Article  Google Scholar 

  • Lerczak JA, Geyer WR (2004) Modeling the lateral circulation in straight, stratified estuaries. J Phys Oceanogr 34(6):1410–1428

    Article  Google Scholar 

  • Lin J, Kuo AY (2001) Secondary turbidity maximum in a partially mixed microtidal estuary. Estuaries 24(5):707–720

    Article  Google Scholar 

  • Lin J, Xie L, Pietrafesa LJ, Shen J, Mallin MA, Durako MJ (2006) Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries. Estuar, Coast Shelf Sci 70:423–437

    Article  Google Scholar 

  • Liu G, Zhu J, Wang Y, Wu H, Wu J (2011) Tripod measured residual currents and sediment flux: impacts on the silting of the deepwater navigation channel in the Changjiang estuary. Estuar, Coast Shelf Sci 93(3):192–201

    Article  Google Scholar 

  • Mehta AJ (1984) Characterization of cohesive sediment properties and transport processes in estuaries. In: Mehta AJ (ed) Lecture notes on coastal and estuarine studies, vol 14. Springer-Verlag, pp 290–325

  • Mitchell S, Lawler D, West J, Couperthwaite J (2003) Use of continuous turbidity sensor in the prediction of fine sediment transport in the turbidity maximum of the Trent estuary, UK. Estuar, Coast Shelf Sci 58(3):645–652

    Article  Google Scholar 

  • Murray AB (2003) Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations. In: Wilcock PR, Iverson RM(eds) Prediction in Geomorphology, Geophysical Monograph, vol 135. American Geophysical Union, pp 151–168. doi:10.1029/135GM11

  • Postma H (1954) Hydrography of the Dutch Wadden Sea. Arch Neerl Zool 10(4): 405–511. doi:10.1163/036551654X00087

    Article  Google Scholar 

  • Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth J Sea Res 1: 148–190. doi:10.1016/0077-7579(61)90004-7

    Article  Google Scholar 

  • Postma H (1967) Sediment transport and sedimentation in the estuarine environment. Estuaries 83:158–179

    Google Scholar 

  • Schoellhamer DH (2001) Influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay. IEP-Newsl 14:54–61

    Google Scholar 

  • Schramkowski GP, de Swart HE (2002) Morphodynamic equilibrium in straight tidal channels: combined effects of Coriolis force and external overtides. J Geophys Res 107(C12):3227–3245

    Article  Google Scholar 

  • Scully ME, Friedrichs CT (2003) The influence of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary. Ocean Dyn 53(3):208–219

    Article  Google Scholar 

  • Scully ME, Geyer WR, Lerczak JA (2009) The influence of lateral advection on the residual estuarine circulation: a numerical modeling study of the Hudson River estuary. J Phys Oceanogr 39(1):107–124

    Article  Google Scholar 

  • Stacey MT, Brennan ML, Burau JR, Monismith SG (2010) The tidally averaged momentum balance in a partially and periodically stratified estuary. J Phys Oceanogr 40: 2418–2434. doi:10.1175/2010JPO4389.1

    Article  Google Scholar 

  • Talke SA, de Swart, HE, Schuttelaars HM (2009a) An analytical model of the equilibrium distribution of suspended sediment in an estuary. Cont Shelf Res 29(1): 119–135. doi:10.1016/j.csr.2007.09.002

    Article  Google Scholar 

  • Talke SA, De Swart HE, De Jonge VN (2009b) An idealized model and systematic process study of oxygen depletion in highly turbid estuaries. Estuaries 32(4):602–620

    Article  Google Scholar 

  • Uncles RJ, Easton AE, Griffiths ML, Harris C, Howland RJM, King RS, Morris AW, Plummer DH (1999) Seasonality of the turbidity maximum in the Humber-Ouse estuary, UK. Mar Pollut Bull 37(3–7):206–215

    Article  Google Scholar 

  • Uncles RJ, Stephens JA, Smith RE (2002) The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time. Cont Shelf Res 22(11–13):1835–1856

    Article  Google Scholar 

  • Uncles RJ, Stephens JA, Harris C (2006) Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system: the upper Humber and Ouse Estuary, UK. Mar Geol 235(1–4):213–228

    Article  Google Scholar 

  • Warner JC, Geyer WR, Lerczak JA (2005) Numerical modeling of an estuary: a comprehensive skill assessment. J Geophys Res 110: 691. doi:C05001:10.1029/2004JC002

    Article  Google Scholar 

  • Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22(9):1339–1360

    Article  Google Scholar 

  • Winterwerp JC (2011) Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening. Ocean Dyn 61(2): 203–212. doi:10.1007/s10236-010-0332-0

    Article  Google Scholar 

  • Wright LD, Friedrichs CT, Kim SC, Scully ME (2001) Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves. Mar Geol 175:25–45

    Article  Google Scholar 

  • Wurpts RW, Torn P (2005) 15 years experience with fluid mud: definition of the nautical bottom with rheological parameters. Terra et Aqua 99:22–32

    Google Scholar 

Download references

Acknowledgments

We thank S.A. Talke, R. Uncles and C. Jiang for providing data of the Ems, tidal Ouse and Yangtze. Part of the work of the first author was funded by the Dutch Waddenfonds and the Dutch Ministry of Public Works. We thank Carl Friedrichs and three anonymous reviewers for their comments and suggestions which improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper J. A. Donker.

Additional information

Responsible Editor: Emil Vassilev Stanev

Appendix: Expressions

Appendix: Expressions

Description of the model parameters values for the model. All model parameters are functions of the scaled vertical coordinate ζ, the Péclet number Pe v depends on horizontal coordinate x (see Eq. (16)) and the scaled depth \(\tilde{h}\) which is defined as h(x)/H.

$$ m_1 = (\tilde{h}^3-9\zeta^2\tilde{h}-8\zeta^3), $$
(23)
$$ m_2 = \frac{12G_1}{Pe_v^{4}\tilde{h}^3}\mathrm{exp}\Big(-Pe_v\big(\zeta+\tilde{h}\big)\Big), $$
(24)
$$ m_{3} = -m_{2}Pe_{v}, $$
(25)
$$ m_{4} = \Bigg(\frac{24G_2}{Pe_v^5\tilde{h}^3}\mathrm{exp}\Big(-Pe_v\big(\zeta+\tilde{h}\big)\Big)-m_2\tilde{h}\Bigg)Pe_v, $$
(26)

in which

$$ \begin{array}{rll} G_1&=&4\tilde{h}^3Pe_v \\ &&+\,\Big(-6\zeta^2+6\tilde{h}^2+\tilde{h}^2Pe_v^2(\zeta+\tilde{h})(3\zeta+\tilde{h})\Big) \\ &&{\kern12pt}\times\,\mathrm{exp}\Big(Pe_v\zeta\left.\right)\Big) \\ &&+\Big(6\zeta^2-6\tilde{h}^2-6\zeta^2\tilde{h}Pe_v+2\tilde{h}^3Pe_v\Big) \\ &&{\kern12pt}\times\,\mathrm{exp}\Big(Pe_v\big(\zeta+\tilde{h}\big)\Big),\\ G_2&=&6\tilde{h}^3Pe_v+2\zeta Pe_v^2\tilde{h}^3 \\ &&+\,\Big(\tilde{h}^4Pe_v^2+4\zeta\tilde{h}^3Pe_v^2+12\tilde{h}^2 \\ &&+\,3\zeta^2Pe_v^2\tilde{h}^2-12\zeta^2\Big)\mathrm{exp}\Big(Pe_v\zeta\left.\right)\Big) \\ &&+\,\Big(-12\zeta^2\tilde{h}Pe_v-\tilde{h}^4Pe_v^2+6\tilde{h}^3Pe_v \\ &&-\,12\tilde{h}^2+3\tilde{h}^2\zeta^2Pe_v^2+12\zeta^2\Big)\mathrm{exp}\Big(Pe_v\big(\zeta+\tilde{h}\big)\Big). \end{array} $$
$$ \begin{array}{rll} T_s&=&\frac{1}{Pe_v^4}\Big\{\Big(-48+Pe_v^3\tilde{h}^3-18Pe_v\tilde{h}\Big)\\ &&{\kern18pt}-\times\,\mathrm{exp}\big(Pe_v\tilde{h}\big)+48-30Pe_v\tilde{h}\\ &&{\kern18pt}+\,6Pe_v^2\tilde{h}^2\Big\}, \end{array} $$
(27)
$$ T_t = \frac{-12H_1}{Pe_v^{7}\tilde{h}^3}\mathrm{exp}\big(-2Pe_v\tilde{h}\big), $$
(28)
$$ T_h = -T_tPe_v, $$
(29)
$$ T_{p} = \Bigg(T_t\tilde{h}-\frac{-12H_2}{Pe_v^{8}\tilde{h}^3}\mathrm{exp}\big(-2Pe_v\tilde{h}\big)\Bigg)Pe_v, $$
(30)
$$ \begin{array}{rll} T_Q &=& \frac{-2}{Pe_v^3\tilde{h}^3}\Big\{(-1+\frac{1}{2}Pe_v^2\tilde{h}^2)\mathrm{exp}\big(-Pe_v\tilde{h}\big)\\ &&+\,1-\tilde{h}Pe_v\Big\}, \end{array} $$
(31)
$$ T_{K_h} = \frac{1-\mathrm{exp}\big(-Pe_v\tilde{h}\big)}{Pe_v}, $$
(32)
$$ T_{hK_h} = \mathrm{exp}\big(-Pe_v\tilde{h}\big)-1, $$
(33)
$$ \begin{array}{rll} T_{pK_h} &=& \Bigg(T_{hK_h}\tilde{h}-\frac{\mathrm{exp}\big(-Pe_v\tilde{h}\big)+Pe_v\tilde{h}-1}{Pe_v^2}\Bigg) \\ &&\times\,Pe_v, \end{array} $$
(34)

in which

$$ \begin{array}{rll} H_1&=&12-\tilde{h}^2Pe_v^2\Big(12+\tilde{h}Pe_v\big(6+\tilde{h}Pe_v\big)\Big) \\ &&+\,\Big(-24+4\tilde{h}Pe_v\big(6+3\tilde{h}Pe_v-\tilde{h}^2Pe_v^2\big)\Big) \\ &&\times\,\mathrm{exp}\Big(Pe_v\tilde{h}\Big)\\ &&+\,\Big(12-2\tilde{h}Pe_v\big(12-6\tilde{h}Pe_v+\tilde{h}^2Pe_v^2\big)\Big) \\ &&\times\,\mathrm{exp}\Big(2Pe_v\tilde{h}\Big),\\ H_2&=&48-\tilde{h}^2Pe_v^2\big(36+15\tilde{h}Pe_v+2\tilde{h}^2Pe_v^2\big) \\ &&+\,\Big(2\tilde{h}Pe_v\big(48+\tilde{h}Pe_v\big(-6+\tilde{h}Pe_v\big) \\ &&\times\,\big(-2+\tilde{h}Pe_v\big)\big)-96\Big)\times\mathrm{exp}\Big(Pe_v\tilde{h}\Big) \\ &&-\,\Big(\tilde{h}Pe_v\big(4-\tilde{h}Pe_v\big)\big(24+\tilde{h}Pe_v \\ &&{\kern12pt}\times\big(-9+2\tilde{h}Pe_v\big)\big)+48\Big)\times \mathrm{exp}\Big(2Pe_v\tilde{h}\Big). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donker, J.J.A., de Swart, H.E. Effects of bottom slope, flocculation and hindered settling on the coupled dynamics of currents and suspended sediment in highly turbid estuaries, a simple model. Ocean Dynamics 63, 311–327 (2013). https://doi.org/10.1007/s10236-013-0593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0593-5

Keywords

Navigation