Skip to main content
Log in

Whitefish (Coregonus lavaretus) Response to Varying Potassium and Sodium Concentrations: A Model of Mining Water Toxic Response

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Boreal waters are typically low in minerals and oligotrophic, and therefore particularly sensitive to changes in mineral composition. We investigated the effects of potassium and the potassium: sodium (K+: Na+) ratio in freshwater on growth performance and oxidative stress in a typical northern species of whitefish, Coregonus lavaretus. Fish were subjected to 0.8 mM Na and 4.4 mM K, which corresponds to the K+:Na+ ratio in a lake contaminated by mining wastes from the Kostomuksha iron mine and ore dressing mill in northwestern Russia. The control group was subjected to water with similar mineralization levels and equal amounts of Na and K (approximately 0.3 mM of each). Potassium excess caused a decrease in fish growth rate and oxidative stress, as indicated by the level of lipid peroxidation product malondialdehyde (MDA). Glutathione-S-transferase (GST) activity and the level of reduced glutathione (GSH) were not affected by cation composition.

Zusammenfassung

Boreale Gewässer sind gewöhnlich schwach mineralisiert und oligotroph, und daher besonders empfindlich gegenüber Änderungen ihrer Ionenzusammensetzung. Wir untersuchten die Einflüsse von Kalium und des Verhältnisses von Kalium zu Natrium (K+ : Na+) im Süßwasser auf die Wachstumsleistung und den oxidativen Stress einer typischen im Norden verbreiteten Maränenart, Coregonus lavaretus. Die Fische wurden Konzentrationen von 0,8 mM Na+ und 4,4 mM K+ ausgesetzt, die dem K+ : Na+ Verhältnis eines Sees entsprachen, der durch Bergbauabfälle der Kostomuksha Eisenzeche und Erzaufbereitunghütte in Nordwestrussland verunreinigt ist. Eine Kontrollgruppe von Versuchstieren wurde in einem Wasser mit ähnlichem Mineralisierungsgrad, jedoch gleichhoher Konzentration von Na+ and K+ (jeweils ungefähr 0,3 mM) gehältert. Der Kaliumüberschuss verursachte einen Rückgang der Wachstumsleistung der Fische und einen oxidativen Stress, der durch den Gehalt des Lipidabbauprodukts Malondialdehyd (MDA) angezeigt wurde. Die Aktivität der Glutathion-S-Transferase (GST) und der Gehalt des reduzierten Glutathions (GSH) wurden durch die Kationenzusammensetzung nicht beeinträchtigt.

Resumen

Las aguas boreales son bajas en minerales y oligotróficas y, debido a ello, son particularmente sensibles a cambios en la composición mineral. Hemos investigado los efectos del potasio y de la relación potasio:sodio (K+: Na+) en agua fresca sobre el crecimiento y el estrés oxidativo en una típica especie de peces del norte: lavareto, Coregonus lavaretus. Los peces fueron expuestos a 0,8 mM de Na y 4,4 mM de K, que corresponde a la relación K+:Na+ en un lago contaminado con residuos mineros de la mina de hierro Kostomuksha en el noroeste de Rusia. El grupo control estuvo expuesto a agua con iguales niveles de mineralización e iguales cantidades de Na y K (aproximadamente 0,3 mM de cada uno). El exceso de K causó un decrecimiento en la velocidad de crecimiento del pez y estrés oxidativo, según indica el nivel de malondialdehido (MDA) que es producto de la peroxidación lipídica. La actividad de la glutatión-S-transferasa (GST) y el nivel de glutatión reducido (GSH) no fueron afectados por la composición catiónica

贝加尔白鲑(突唇白鲑)对钾、钠浓度变化的反应:一种矿井水毒理反应方式

北方针叶林区的湖水以低矿物质和富氧为典型特征,湖水水质类型常因矿物质微弱改变而变化。研究了钾和钾钠比对贝加尔白鲑(突唇白鲑)生长状况和氧化应激的影响。试验组水质为钠0.8 mM和钾4.4 mM,钾钠比模拟了俄罗斯西北部受Kostomuksha铁矿和矿石加工厂污染的湖水环境。对照组水质为钠和钾分别为0.3 mM,具有与试验组相似的矿物质水平。依据脂过氧化作用的产物MDA推断,过量钾使鱼生长速度和氧化应激减慢。谷胱甘肽S-转移酶(GST)的活性和谷胱甘肽(GSH) 水平的降低并未受阳离子成分变化的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad I, Hamid T, Fatima M, Hitendra S, Chand-Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta 1523(1):37–48

    Article  Google Scholar 

  • Bird RP, Draper AH (1984) Comparative studies on different methods of malondialdehyde determination. Method Enzymol 90: 105–110

    Google Scholar 

  • Borvinskaya EV, Nemova NN, Smirnov LP (2011) Glutathione S-transferase in northern freshwater fish: the effect of water mineralization. Doklady Biolog Sci 436 (4):566–568

    Google Scholar 

  • Borvinskaya EV, Sukhovskaya IV, Murzina SA, Vasilyeva OB, Nazarova MA, Smirnov LP (2012) Biochemical and histological parameters of tissues of pike (Esox lucius L.) from the lake with high mineralization. Comp Biochem Phys A 163:S12. doi:10.1016/j.cbpa.2012.05.040

    Article  Google Scholar 

  • Churova MV, Murzina SA, Meshcheryakova OV, Nemova NN (2014) Metabolic enzymes activity and histomorphology in the liver of whitefish (Coregonus lavaretus L.) and pike (Esox lucius L.) inhabiting a mineral contaminated lake. Environ Sci Pollut Res Int 21(23):13342–13352. doi:10.1007/s11356-014-3014-5

    Article  Google Scholar 

  • Cohn VH, Lyle J (1966) A fluorometric assay for glutathione. Anal Biochem 14(3):434–440

    Article  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15(4):316–328

    Article  Google Scholar 

  • Dietz TH, Byrne RA (1990) Potassium and rubidium uptake in freshwater bivalves. J Exp Biol 150:395–405

    Google Scholar 

  • Dowden BF, Bennett HJ (1965) Toxicity of selected chemicals to certain animals. J Wat Pollut Control Fed 37:1308–1313

    Google Scholar 

  • Ern R, Huong DT, Cong NV, Bayley M, Wang T (2014) Effect of salinity on oxygen consumption in fishes: a review. J Fish Biol 84(4):1210–1220. doi:10.1111/jfb.12330

    Article  Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol-Reg I 295(2):704–713. doi:10.1152/ajpregu.90337.2008

    Google Scholar 

  • Fischer SW, Stromberg P, Bruner KA, Boulet LD (1991) Molluscicidal activity of potassium to the zebra mussel, Dreissena polymorphia: toxicity and mode of action. Aquat Toxicol 20:219–234

    Article  Google Scholar 

  • Furukawa F, Watanabe S, Kakumura K, Hiroi J, Kaneko T (2014) Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Am J Physiol Reg I 307(11):R1303–R1312. doi:10.1152/ajpregu.00071.2014

    Google Scholar 

  • Furukawa F, Watanabe S, Seale AP, Breves JP, Lerner DT, Grau EG, Kaneko T (2015) In vivo and in vitro effects of high-K(+) stress on branchial expression of ROMKa in seawater-acclimated Mozambique tilapia. Comp Biochem Phys A 187:111–1118. doi:10.1016/j.cbpa.2015.05.017

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. USGS Water-Supply Paper 2254, Alexandria

  • Hermenean A, Damache G, Albu P, Ardelean A, Ardelean G, Ardelean DP, Horge M, Nagy T, Braun M, Zsuga M, Kéki S, Costache M, Dinischiotu A (2015) Histopatological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, north western Romania. Ecotox Environ Safe 119:198–205

    Article  Google Scholar 

  • Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184(3):257–268. doi:10.1016/j.resp.2012.07.019

    Article  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74(1):214–226

    Article  Google Scholar 

  • Ilmast NV, Sterligova OP, Kuchko YaA, Pavlovskiy SA (2013) Kostomuksha water reservoir hydrobiocenoses (White Sea water basin) in the conditions of technogenic pollution. Isvestia of Samara scientific centre 15(3): 916–920 (in Russian)

    Google Scholar 

  • Imlay MJ (1973) Effect of potassium on survival and distribution of freshwater mussels. Malacologia 12:97–113

    Google Scholar 

  • Ji Y, Lu G, Wang C, Zhang J (2012) Biochemical responses of freshwater fish Carassius auratus to polycyclic aromatic hydrocarbons and pesticides. Water Sci Eng 5(2):145–154

    Google Scholar 

  • Ji K, Kim J, Lee M, Park S, Kwon HJ, Cheong HK, Jang JY, Kim DS, Yu S, Kim YW, Lee KY, Yang SO, Jhung IJ, Yang WH, Paek DH, Hong YC, Choi K (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Pollut 178:322–328

    Article  Google Scholar 

  • Kalinkina NM, Kulikova TP, Morozov AK, Vlasova LI (2003) Causes of technogenic changes in a freshwater zooplanktonic community. Biol Bull 30(6):627–632

    Article  Google Scholar 

  • Kirsten WJ, Lindholm-Franzén I (1980) Spectrophotometric determination of chloride, bromide, and iodide with an improved mercury-iron-thiocyanate method. Microchem J 25:240–245

    Article  Google Scholar 

  • Kong X, Wang S, Jiang H, Nie G, Li X (2012) Responses of acid/alkaline phosphatase, lysozyme, and catalase activities and lipid peroxidation to mercury exposure during the embryonic development of goldfish Carassius auratus. Aquat Toxicol 120–121:119–125

    Article  Google Scholar 

  • Kwong AK, Ng AH, Leung LY, Man AK, Woo NY (2009) Effect of extracellular osmolality and ionic levels on pituitary prolactin release in euryhaline silver sea bream (Sparus sarba). Gen Comp Endocrinol 160(1):67–75. doi:10.1016/j.ygcen.2008.10.024

    Article  Google Scholar 

  • Lozovik PA, Kalmykov MV, Dubrovina LV (2007) Chemical composition of industry-generated waters. In: Lozovik PA, Kulikova TP, Martunova NN (eds) Status of water objects in republic of Karelia. According to 1998–2006 monitoring results. Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk, pp 100–106 (in Russian)

    Google Scholar 

  • Mccarraher DB (1971) Survival of some freshwater fishes in the alkaline eutrophic waters of Nebraska. J Fish Res Board Can 28:1811–1814

    Article  Google Scholar 

  • Meybeck M (2003) Global occurrence of major elements in rivers treatise on geochemistry. In: Drever JI (ed) Treatise on Geochemistry. Elsevier 5:207–223

  • Mount DR, Gulley DD, Hockett JR, Garrison TD, Evans JM (1997) Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magnaand Pimephales promelas (fathead minnows). Environ Toxicol Chem 16(10):2009–2019

    Article  Google Scholar 

  • Murzina SA, Nefedova ZA, Nemova NN (2011) Liver dysfunction and pathologies of roach (Rutilus rutilus), pike (Esox lucius) and whitefish (Coregonus lavaretus) under ore-dressing sewages contamination (Lake Kostomukshskoe and Lake Kamennoi, northern Karelia, Russia). Application of histological methods in analyses of liver structure of fishes. J Int Sci Publ Ecol Safe 5(3) (ISSN 13113–2563; on-line)

  • Nemova NN, Ieshko EP, Meshcheryakova OV, Il’mast NV, Anikieva LV, Lebedeva DI, Churova MV, Sterligova OP, Kuchko YaA (2012) The European whitefish, Coregonus lavaretus (L.), under conditions of technogenic pollution in the Kostomuksha tailing pond. Ekologiya 4:298–302

    Google Scholar 

  • Nguyen PT, Do HT, Mather PB, Hurwood DA (2014) Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus). Fish Physiol Biochem 40(6):1839–1848. doi:10.1007/s10695-014-9972-1

    Article  Google Scholar 

  • Noble JE, Bailey MJA (2009) Quantitation of proteins. Method Enzymol 463:73–95

    Article  Google Scholar 

  • Okhawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Analyt Biochem 95:351–358

    Article  Google Scholar 

  • Opoku-Okrah C, BK Safo Acquah, EE Dogbe (2015) Changes in potassium and sodium concentrations in stored blood. Pan Afr Med J 20:236, doi:10.11604/pamj.2015.20.236.5851

    Article  Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236

    Google Scholar 

  • Seale AP, Watanabe S, Grau EG (2012) Osmoreception: perspectives on signal transduction and environmental modulation. Gen Comp Endocrinol 176(3):354–360. doi:10.1016/j.ygcen.2011.10.005

    Article  Google Scholar 

  • Sukhovskaya IV, Borvinskaya EV, Smirnov LP, Nemova NN (2010) Comparative analysis of the methods for determination of protein concentration—spectrophotometry in the 200–220 nm range and the Bradford protein assay. P Karelian Res Centre RAS 2: 68–71 (in Russian)

    Google Scholar 

  • Talling JF (1992) Environmental regulation in African shallow lakes and wetlands. Rev Hydrobiol Tropic 25:87–144

    Google Scholar 

  • Talling JF (2010) Potassium - a non-limiting nutrient in fresh waters? Freshwater Rev 3:97–104

    Article  Google Scholar 

  • Tkatcheva V, Hyvärinen H, Kukkonen J, Ryzhkov LP, Holopainen IJ (2004) Toxic effects of mining effluents on fish gills in a subarctic lake system in NW Russia. Ecotoxicol Environ Safe 57:278–289

    Article  Google Scholar 

  • Tkatcheva V, Holopainen IJ, Hyvärinen H, Kukkonen JVK (2007) The responses of rainbow trout gills to high lithium and potassium concentrations in water. Ecotoxicol Environ Safe 68:419–425

    Article  Google Scholar 

  • Trama FB (1954) The acute toxicity of some common salts of sodium, potassiuma nd calcium to the common bluegill (Lepomis macrochirus Rafinesque). P Acad Nat Sci Phil 106:185–205

    Google Scholar 

  • Utsumi S, Oinuma Yo, Isozaki A (1978) Spectrophotometric determination of the micro amounts of sulfate ion with dimethylsulfonazo III. Bunseki Kagaku 5:278–282

    Article  Google Scholar 

  • Vasilyeva OB, Nazarova MA, Rippati PO, Nemova NN (2012) Lipid content and lipid peroxidation in fish organs and tissues. In: Nemova NN, Ilmast NV, Ieshko EP, Mescheryakova OV (eds) Biota of the Northern Lakes under anthropogenic transformation. Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk, pp 175–185 (in Russian)

    Google Scholar 

  • Vlasova LI (1998) Zooplankton. In: Filatov NN, Kulikova TP, Lozovik PA (eds) Current state of water objects in the Republic of Karelia, result of monitoring 1992–1997, Petrozavodsk, pp 134–137 (in Russian, with English summary)

  • Weiner ID, Wingo CS (1998) Hyperkalemia: a potential silent killer. J Am Soc Nephrobiol 9:1535–1543

    Google Scholar 

  • Wilcox SJ, Dietz TH (1995) Potassium transport in the freshwater bivalve Dreissena polymorpha. J Exp Biol 198:861–868

    Google Scholar 

Download references

Acknowledgements

The research was made in the frame of the budgetary theme No. 0221-2014-0033 and the Program of the Presidium of the Russian Academy of Sciences no. 21 “Biodiversity of Natural Systems. Biological Resources of Russia: State Evaluation and Fundamental Bases of Monitoring,” project no. 0221-2015-0003 “Dynamics of Changes in Ichthyofauna of Freshwater Ecosystems of Russian European North under Climatic and Anthropogenic Influence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.V. Krutskikh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borvinskaya, E., Sukhovskaya, I., Vasil’eva, O. et al. Whitefish (Coregonus lavaretus) Response to Varying Potassium and Sodium Concentrations: A Model of Mining Water Toxic Response. Mine Water Environ 36, 393–400 (2017). https://doi.org/10.1007/s10230-016-0426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-016-0426-0

Keywords

Navigation