Skip to main content
Log in

Assessment of Trace Elements in Soils and Mine Water Surrounding a Closed Manganese Mine (Anti Atlas, Morocco)

Bewertung von Spurenelementen in Böden und Grubenwasser eines stillgelegten Manganbergwerks (Anti Atlas, Marokko)

Relevamiento de elementos traza en suelos y en el agua de mina cercana a la mina de manganeso actualmente cerrada (Anti Atlas, Marruecos)

闭坑锰矿周围土壤及矿井水微量元素分析(小阿特拉斯山脉,摩洛哥)

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Five mine water samples, 23 topsoil samples, and four mine waste (tailings) samples were collected to assess the effects of a closed Moroccan Mn mine. Based on the pH, electrical conductivity, and concentrations of sulphate, Cu, Zn, As, Cd, Pb, and Mn, mining has not adversely influenced mine water quality. Soil samples were analyzed for 23 chemical elements and the results were interpreted by univariate and multivariate statistical techniques. Based on an enrichment factor (EF) calculation, only Cd, As, V, and Mn were selected for further study. Geochemical background (GB) and geoaccumulation index (Igeo) were determined for these elements to differentiate between geogenic and anthropogenic enrichment. The GB values showed that the Tiwiyyine soils contained a high geogenic content of Cd, As, V, and Mn that reflected the geochemistry of the parental rocks in this mineralized region. The Igeo calculation revealed that these soils were moderately influenced by anthropogenic activity, which had increased the concentrations of those elements. Finally, geochemical maps revealed that mining was likely responsible for the anthropogenic soil pollution.

Zusammenfassung

5 Grubenwasserproben, 23 Proben des Oberbodens und 4 Tailingsproben wurden genommen, um die Auswirkungen eines marokkanischen Manganbergwerks zu bewerten. Ausgehend von pH-Wert, elektrischer Leitfähigkeit und den Konzentrationen von Sulfat, Cu, Zn, As, Cd, Pb und Mn hat der Bergbau die Wasserqualität nicht negativ beeinflusst. Die Bodenproben wurden auf 23 chemische Elemente untersucht. Die Ergebnisse wurden mittels uni- und multivariater statistischer Methoden bewertet. Basierend auf der Berechnung eines Anreicherungsfaktors (EF) wurden nur Cd, As, V und Mn in die weiteren Betrachtungen einbezogen. Um zwischen geogener und anthropogener Anreicherung zu unterscheiden, wurden der geologische Hintergrund (GB) und der Geoakkumulalationsindex (Igeo) für diese Elemente bestimmt. Die geogenen Hintergrundwerte zeigten, dass die Böden von Tiwiyyine hohe geogene Gehalte an Cd, As, V und Mn haben, die die Geochemie des Muttergesteins in dieser erzreichen Gegend widerspiegeln. Die Berechnung des Igeo erbrachte, dass menschliche Aktivität diese Böden mäßig beeinflusst und die Konzentrationen der genannten Elemente erhöht haben. Geochemische Karten zeigten, dass diese anthropogene Bodenkontamination wahrscheinlich durch den Bergbau verursacht wurde.

Resumen

Se colectaron 5 muestras de agua de mina, 23 muestras de suelo superficial y 4 muestras de colas para analizar los efectos de una mina de manganeso actualmente cerrada. En base a las medidas de pH, de conductividad eléctrica y de las concentraciones de sulfato, Cu, Zn, As, Cd, Pb y Mn, se puede concluir que la minería no ha afectado la calidad del agua de mina. Se analizaron 23 elementos quimicos en las muestras de suelos y los resultados fueron interpretados por técnicas estadísticas univariantes y multivariantes. Basados en los cálculos del factor de enriquecimiento (EF), sólo Cd, As, V y Mn fueron seleccionados para estudios posteriores. El fondo geoquímico (GB) y el índice de geoacumulación (Igeo) fueron determinados para estos elementos para diferenciar entre enriquecimiento geogénico y antropogénico. Los valores GB mostraron que los suelos Tiwiyyine contenían un alto contenido geogénico de Cd, As, V y Mn que reflejaban la geoquímica de las rocas en esta región mineralizada. El cálculo Igeo reveló que los suelos estaban moderadamente influenciados por la actividad antropogénica que había incrementado las concentraciones de aquellos elementos. Finalmente, los mapas geoquímicos revelaron que la minería era probablemente responsable por la contaminación antropogénica de los suelos.

摘要

采集了5个矿井水、23个表层土和4个矿山固废(尾矿)样品评价摩洛哥小阿特拉斯山脉(Anti Atlas, Morocco)关闭锰矿(Tiwiyyine)的环境影响。矿井水的pH值、电导率及硫酸盐、Cu、 Zn、As、Cd、Pb、Mn的浓度分析表明采矿还未对矿井水质产生不利影响。运用单变量和多变量统计法分析了土壤样品的23种化学元素测试结果。基于富集因子(EF)分析,选取Cd、As、V及Mn进一步分析。通过地球化学背景值(GB)及地质富集指数 (Igeo)计算识别这几种元素的地质与人类富集成因。地球化学背景值(GB)计算结果表明Tiwiyyine土壤富含地质成因的Cd、As、V和Mn,反映了成矿区母岩的地球化学特征。地质富集指数(Igeo)计算结果表明土样已受到一定程度人类活动影响,这几种元素浓度已经增大。地球化学成果图显示采矿活动可能是耕作土壤受污染的原因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta JA, Faz A, Martinez M, Zornoza R, Carmona DM, Kabas S (2011) Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 109:8–17

    Article  Google Scholar 

  • Argane R, Benzaazoua M, Bouamrane A, Hakkou R (2015) Cement hydration and durability of low sulfide tailings-based renders: a case study in Moroccan constructions. Miner Eng 76:97–108

  • Bauer I, Bor J (1995) Lithogene, geogene und anthropogene Schwermetallgehalte von Lößböden an den Beispielen von Cu, Zn, Ni, Pb, Hg und Cd. Mainzer Geowiss Mitt 21:47–70

    Google Scholar 

  • Bossé B, Bussière B, Hakkou R, Maqsoud A, Benzaazoua M (2013) Assessment of phosphate limestone wastes as a component of a store-and-release cover in a semiarid climate. Mine Water Environ 32(2):152–157

    Article  Google Scholar 

  • Bourennane H, Douay F, Sterckeman T, Villanneau E, Ciesielski H, King D, Baize D (2010) Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 157:165–174

    Article  Google Scholar 

  • Buat-Menard P, Chesselet R (1978) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:399–411

    Article  Google Scholar 

  • Cai L, Xu Z, Ren M, Guo Q, Hu X, Hu G, Wan H, Peng P (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environ Saf 78:2–8

    Article  Google Scholar 

  • Candeias C, Ferreira da Silva E, Salgueiro AR, Pereira HG, Reis AP, Patinha C, Matos JX, Avila PH (2011) Assessment of soil contamination by potentially toxic elements in Aljustrel mining area in order to implement soil reclamation strategies. Land DegradDev 22:565–585

    Article  Google Scholar 

  • CCME (2006) Canadian soil quality guidelines for the protection of environment and human health. Canadian Council of Ministers of the Environment. http://www.ccme.ca/ourwork/soil.html

  • Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere 87:945–953

    Article  Google Scholar 

  • Chakravarti IM, Laha RG, Roy J (1967) Handbook of methods of applied statistics, vol 1. Wiley, New York City, pp 392–394

    Google Scholar 

  • Chester R, Stoner JH (1973) Pb in particulates from the lower atmosphere of the eastern Atlantic. Nature 245:27–28

    Article  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Persp 108(5):393–397

    Article  Google Scholar 

  • Chung S, Chon HT (2014) Assessment of the level of mercury contamination from some anthropogenic sources in Ulaanbaatar, Mongolia. J Geochem Explor 147:237–244

    Article  Google Scholar 

  • El-Khalil H, El Hamiani O, Bitton G, Ouazzani N, Boularbah A (2008) Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Environ Monit Assess 136:147–160

    Article  Google Scholar 

  • Goumih A, El Adnani M, Hakkou R, Benzaazoua M (2013) Geochemical behavior of mine tailings and waste rock at the abandoned Cu–Mo–W Azegour mine (Occidental High Atlas, Morocco). Mine Water Environ 32(2):121–132

  • Gummow B (2011) Vanadium: environmental pollution and health effects. Encyclopedia of environmental health. Elsevier, Amsterdam, the Netherlands, pp 628–636

    Book  Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco): 1. environmental characterization. Mine Water Environ 27:145–159

    Article  Google Scholar 

  • Han Y, Du P, Cao J, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper & Row, New York

    Google Scholar 

  • Health Canada (1987) Manganese. Technical document—chemical/physical parameters in www.hc-sc.gc.ca (accessed Nov 11, 2014)

  • Iavazzo P, Adamo P, Boni M, Hillier S, Zampella M (2012) Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. J Geochem Explor 113:56–67

    Article  Google Scholar 

  • Ji Y, Feng Y, Wu J, Zhu T, Bai Z, Duan C (2003) Assessment of arsenic enrichment of cultivated soils in southern Poland. PolJ Environ Stud 2:187–192

    Google Scholar 

  • Khalil A, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R (2013) Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. J Geochem Explor 125:117–129

    Article  Google Scholar 

  • Khalil A, Hanich L, Hakkou R, Lepage M (2014) GIS-based environmental database for assessing the mine pollution: a case study of an abandoned mine site in Morocco. J Geochem Explor 144:468–477

    Article  Google Scholar 

  • Kim SM, Choi Y, Suh J, Oh S, Park HD, Yoon SH, Go WR (2012) ArcMine: AGIS extension to support mine reclamation planning. Comput Geosci 46:84–95

    Article  Google Scholar 

  • Lawrence RW, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. In Proceedings 4th international conferences on acid rock drainage (ICARD), Vancouver 1:451–464

  • Li X, Feng L (2012) Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmos Environ 47:58–65

    Article  Google Scholar 

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    Article  Google Scholar 

  • Lu X, Loretta Li Y, Wang L, Lei K, Huang J, Zhai Y (2009a) a) Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ 43:2489–2496

    Article  Google Scholar 

  • Lu X, Wang L, Lei K, Huang J, Zhai Y (2009b) b) Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J Hazard Mater 161:1058–1062

    Article  Google Scholar 

  • Lu XW, Wang LJ, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    Article  Google Scholar 

  • Maftei AE, Iancu OG, Buzgar N (2014) Assessment of minor elements contamination in Bistriţa River sediments (upstream of Izvorul Muntelui Lake, Romania) with the implication of mining activity. J Geochem Explor 145:25–34

    Article  Google Scholar 

  • Martínez J, Llamas J, De Miguel E, Rey J, Hidalgo MC (2007) Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). J Geochem Explor 94:19–29

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the Trace Element composition of sedimentary rocks and upper continental crust, Geochem Geophy Geosyst, 2: 2000GC000109. doi:10.1029/2000GC000109

  • Miller SD, Jeffery JJ, Wong JWC (1991) Use and misuse of the acid base account for AMD prediction. In: Proceedings, 2nd ICARD, Montreal, Canada, vol 3, p 489–506

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2(3):108–118

    Google Scholar 

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins-Veränderungen seitt 1971. Umschan 79: 778–783 [in German, with English abstract]

  • Müller G (1981) Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. ChemZtg 6:157–164

    Google Scholar 

  • Ouakibi O, Loqman S, Hakkou R, Benzaazoua M (2013) The potential use of phosphatic limestone wastes in the passive treatment of AMD: a laboratory study. Mine Water Environ 32(4):266–277

    Article  Google Scholar 

  • Reimann C, De Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337:91–107

    Article  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Tokyo

    Book  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

  • Sobek AA, Schuller W, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minerals. US Environmental Protection AgencyTech Rept EPA-600/2–78–054, Washington DC

  • Sun H, Li J, Mao X (2012) Heavy metals’ spatial distribution characteristics in a copper mining area of Zhejiang Province. J Geogr Inf Syst 4:46–54

    Google Scholar 

  • Tang J, Xiao TF, Wang SJ, Lei JL, Zhang MZ, Gong YY, Li H, Ning ZP, He LB (2009) High cadmium concentrations in areas with endemic fluorosis: a serious hidden toxin? Chemosphere 76:300–305

    Article  Google Scholar 

  • Thermo Scientific NITON (2008) Thermo scientific NITON® XL3t 900 series product specifications. www.thermo.com/niton. Accessed 3 Nov 2014)

  • Wei Z, Wang D, Zhou H, Qi Z (2011) Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environ Sci 10:1946–1952

    Article  Google Scholar 

  • WHO (1997) Guidelines for drinking-water quality. Recommendations, vol 1. World Health Org, Geneva, pp 1–4

    Google Scholar 

  • Yenilmez F, Kuter N, Emil MK, Aksoy A (2011) Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int J Coal Geol 86:12–19

    Article  Google Scholar 

  • Young RA (ed) (1995) The rietveld method. Oxford Univ Press, Oxford

    Google Scholar 

  • Zhang CS, Fay D, Grath DM, Grennan E, Carton OT (2008) Statistical analyses of geochemical variables in soils of Ireland. Geoderma 146:378–390

    Article  Google Scholar 

  • Zhang S, Yang D, Li F, Chen H, Bao Z, Huang B, Zou D, Yang J (2014) Determination of regional soil geochemical baselines for trace metals with principal component regression: a case study in the Jianghan plain, China. Appl Geochem 48:193–206

    Article  Google Scholar 

Download references

Acknowledgments

We thank the International Research Chairs Initiative, funded by the International Development Research Centre (IDRC), Canada and the Canada Research Chairs program, for supporting this research. We also thank the University of Quebec in Abitibi-Temiscamingue (UQAT), Canada, Institute of Research in Mines and Environment (IRME-UQAT) and Research Unit of Service in Mineral Technology (URSTM-UQAT) for funding the geochemical and mineralogical analysis. Finally, we thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Hakkou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10230_2016_397_MOESM1_ESM.pdf

Supplemental Fig. 1(a) Geographical location of the study area in the Moroccan Anti-Atlas; (b) and (c)Photographs showing the abandoned Tiwiyyine mine site and the deposited mine wastes (PDF 496 kb)

Supplemental Fig. 2 Geological map of the study area (PDF 753 kb)

10230_2016_397_MOESM3_ESM.pdf

Supplemental Fig. 3 Abundance of investigated minerals as determined by x-ray diffraction and Rietveld quantification (PDF 6 kb)

Supplementary material 4 (DOCX 13 kb)

Supplementary material 5 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyaziji, A., Khalil, A., Hakkou, R. et al. Assessment of Trace Elements in Soils and Mine Water Surrounding a Closed Manganese Mine (Anti Atlas, Morocco). Mine Water Environ 35, 486–496 (2016). https://doi.org/10.1007/s10230-016-0397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-016-0397-1

Keywords

Navigation