Skip to main content
Log in

Reduction of Cd, Cu, Ni, and Pb Mobility by Active Si in a Laboratory Study

Verringerung der Mobilisierung von Cd, Cu, Ni und Pb durch aktives Si in einem Laborversuch

Reducción de la movilidad de Cd, Cu, Ni y Pb por Si activo en un estudio de laboratorio

活性硅降低Cd、Cu、 Ni和Pb活性的试验研究

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Soluble forms of Si and Si-rich substances may reduce both metal mobility and toxicity. A series of column experiments were performed to investigate the influence of Si-rich materials on the mobility and leaching potential of certain metals. Column experiments were conducted using sandy soil that had been treated with various forms of a Si-rich substance, i.e. diatomaceous earth, zeolite, amorphous silicon dioxide, and concentrated monosilicic acid. The soil was also treated with soluble forms of Cd, Cu, Ni, and Pb to simulate a contaminated mine site. Application of the Si-rich materials resulted in metal immobilization and reduced leaching. It appears that monosilicic acid can cause both physical adsorption and metal precipitation within contaminated soils. Further investigations are recommended to assess the potential use of this approach for remediation of mine tailings and decontamination mine sites.

Zusammenfassung

Lösliche Formen von Si und Si-reichen Substanzen können sowohl die Mobilität von Metallen als auch deren Toxizität verringern. Es wurde eine Reihe von Säulenversuchen durchgeführt, um den Einfluss von Si-reichen Materialien auf die Mobilität und das Freisetzungspotential von verschiedenen Metallen zu untersuchen. Die Säulenversuche wurden unter Verwendung von sandigen Böden, die mit verschiedenen Si-reichen Substanzen, z. B. Diatomeenerde, Zeolithe, amorphes Siliziumdioxid und konzentrierte Monokieselsäure behandelt wurden, durchgeführt. Der Boden wurde darüber hinaus mit gelöstem Cd, Cu, Ni und Pb behandelt, um die Bedingungen eines Bergbaustandorts nachzubilden. Die Verwendung von Si-reichen Materialien führte zu einer Immobilisierung und einer verringerten Freisetzung der Metalle. Es hat sich gezeigt, dass Monokieselsäure sowohl die physikalische Adsorption als auch die Ausfällung von Metallen begünstigt. Weitere Untersuchungen werden empfohlen, um die Übertragbarkeit dieses Ansatzes zur Behandlung von Bergbauhalden und –standorten zu bewerten.

Resumen

Las formas solubles de Si y las sustancias ricas en Si pueden reducir la movilidad y la toxicidad de los metales. Una serie de ensayos en columna fueron realizados para investigar la influencia de materiales ricos en Si sobre la movilidad y el potencial de lixiviación de ciertos metales. Los experimentos en columnas fueron realizados usando suelos arenosos que habían sido tratado con varias formas de una sustancia rica en Si: tierra diatomea, zeolita, dióxido de silicio amorfo y ácido monosilícico concentrado. El suelo fue también tratado con formas soluble de Cd, Cu, Ni y Pb para simular un sitio de mina contaminado. La aplicación de materiales ricos en Si resultó en la inmovilización metálica y la reducción de la lixiviación. Esto indica que el ácido monosilícico puede ser usado tanto para la adsorción física como para la precipitación de metales en suelos contaminados. Futuras investigaciones son necesarias para conocer el potencial uso de esta aproximación para la remediación de colas y la decontaminación de sitios mineros.

摘要

可溶态硅和富硅材料可降低金属离子活性及其毒性。为研究富硅材料对金属活性和可滤出潜力的影响进行了系列淋溶柱实验。实验用沙质土样已为多种形式的富硅材料如硅藻土、沸石、非晶态二氧化硅以及浓偏硅酸等处理。同时,土样亦进行可溶态Cd、Cu、Ni和Pb处理,以模拟土样受污染状态。富硅材料的应用使金属离子活性降低、可滤出潜力减弱。偏硅酸能够在污染土样内发生物理吸附和金属离子沉淀两种作用。值得进一步研究该方法在尾矿修复与污染消除方面的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York City

    Book  Google Scholar 

  • Alvarez-Ayuso E, Garcia-Sanchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862

    Article  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2011) Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Technol 8(2):401–416. doi:10.1007/BF03326227

    Article  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B97:219–243. doi:10.1016/S0304-3894(02)00263-7

    Article  Google Scholar 

  • Barsykova AG, Rochev VA (1979) The influence of silica-gel-rich fertilizers on mobile silicic acid in soil and on available it for plants. In: Shvejkina RV (ed), The control and management of the macro- and micro-element content on media ural region, proceedings, vol 54. Sverdlovsky ACI, pp 84–88

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34. doi:10.1590/S1677-04202005000100003

    Article  Google Scholar 

  • Biel KY, Matichenkov VV, Fomina IR (2008) Protective role of silicon in living systems. In: Martirosyan DM (ed) Functional foods for chronic diseases. Advances in the development of functional foods, vol 3. D&A Inc, Richardson, pp 208–231

    Google Scholar 

  • Bocharnikova EA, Matichenkov VV, Snyder GH (1999) The management of heavy metal behavior and mobility in the soil–plant system. In: Proceedings, 31st mid-atlantic industrial and hazardous waste conference, pp 614–622

  • Bochrnikova EA, Matichenkov VV (2007) Effect of active silicon on mobility of cadmium in the soil–plant system. In: Proceedings of international scientific conference on modern problems in soil contamination, Moscow State University, pp 62–65

  • Brannvall E (2006) An experimental study on the use of natural zeolite for Cu, Pb and Zn immobilization in soil. Mineralogy 56:1–4

    Google Scholar 

  • Cidu R, Frau F, Da Pelo S (2011) Drainage at abandoned mining sites: natural attenuation of contaminants under different seasons. Mine Water Environ 30:113–126

    Article  Google Scholar 

  • Cunha KPV, Nascimento CW (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays, L.) grown on cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330. doi:10.1007/s11270-008-9814-9

    Article  Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Int Sci 280:309–314. doi:10.1016/j.jcis.2004.08.028

    Article  Google Scholar 

  • Favas PJ, Pratas J, Gomes MEP, Cala V (2011) Selective chemical extractions of heavy metals in tailing and soils contaminated by mining activity: environmental implications. J Geochem Explor 111(3):160–171. doi:10.1016/j.gexplo.2011.04.009

    Article  Google Scholar 

  • Garcia-Sanchez A, Alastuey A, Querol X (1999) Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Sci Total Environ 242(1):179–188. doi:10.1016/S0048-9697(99)00383-6

    Article  Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York

  • Kovda VA (1985) Soil biogeochemistry. Nauka Press, Moscow

    Google Scholar 

  • Liang Y, Wong JWC, Wie L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483. doi:10.1016/j.chemosphere.2004.09.034

    Article  Google Scholar 

  • Liang X, Chen Y, Wu X, Zhang F (2012) Progress on phytoremediation of manganese mine wasteland. J Cent South Univ For Technol 12:34–39

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soil. Wiley, New York City

    Google Scholar 

  • Ma JF (2003) Function of silicon in higher plants. Prog Mol Subcell Biol 33:127–147

    Article  Google Scholar 

  • Matichenkov VV (2007) Soil gradation on deficiency of plant available silicon. Agrochemistry 7:22–31

    Google Scholar 

  • Matichenkov VV (2008) Role of mobile compounds of silicon in plants and soil–plants system. Doctoral Dissertation. Institute Basic Biological Problems RAS, Pushchino, Russia (in Russian)

  • Matichenkov V, Bocharnikova E (2001) The relationship between Si and soil physical and chemical properties. In: Datnoff L, Snyder G, Korndorfer G (eds) Silicon in agriculture, studies in plant science. Elsevier, Amsterdam, pp 209–219. doi:10.1016/S0928-3420(01)80017-3

    Chapter  Google Scholar 

  • McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31(11–14):1661–1700. doi:10.1080/00103620009370531

    Article  Google Scholar 

  • Orlov DS (1992) Soil chemistry. Moscow State University Press, Moscow

    Google Scholar 

  • Russell EW (1988) Soil conditions and plant growth. In: Russell EW, Wild A (eds) Russell’s soil conditions and plant growth. Longman Scientific, London, pp 775–779

    Google Scholar 

  • Sabienë N, Brazauskienë DM, Rimmer D (2004) Determination of heavy metal mobile forms by different extraction methods. Ekologija 1:36–41

    Google Scholar 

  • Schindler PW, Furst B, Dick R, Wolf PO (1976) Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd3+, and Pb2+. J Colloid Int Sci 55(2):469–475

    Article  Google Scholar 

  • Shi XH, Zhang CC, Wang H, Zhang FS (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60. doi:10.1007/s11104-004-3920-2

    Article  Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinesis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83. doi:10.1016/j.jhazmat.2009.06.143

    Article  Google Scholar 

  • Stupin DY (2009) Soil pollution and new technologies for their restoration. Lan Press, St. Petersburg

    Google Scholar 

  • Vaculik M, Lux A, Luxiva M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58. doi:10.1016/j.envexpbot.2009.06.012

    Article  Google Scholar 

  • Zhang Ch, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307. doi:10.1016/j.envexpbot.2007.10.024

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the International S&T Cooperation Program of China (ISTCP) special project (2015DFR91000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Matichenkov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1.

SEM microphotographs of the diatomaceous earth (PDF 928 kb)

Supplemental Fig. 2.

SEM microphotographs of the zeolite (PDF 806 kb)

Supplemental Fig. 3.

SEM microphotographs of the amorphous silicon dioxide (PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matichenkov, V.V., Bocharnikova, E.A., Pahnenko, E.P. et al. Reduction of Cd, Cu, Ni, and Pb Mobility by Active Si in a Laboratory Study. Mine Water Environ 35, 302–309 (2016). https://doi.org/10.1007/s10230-015-0353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0353-5

Keywords

Navigation