Skip to main content

Advertisement

Log in

Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I

Herleitung von Ursprung und Entwicklung der geochemischen Charakteristik von Wässern des Candiota-Kohlereviers (Südbrasilien): Teil I

Trazando el origen y la evolución de las características geoquímicas de aguas del área de la mina de carbón Candiota (Sur de Brasil): Parte I

坎迪奥塔煤矿区(巴西南部)水环境的地球化学成因与演化:第1部分

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

This work correlates surface and ground water composition to the substrata, and traces how water chemistry evolves at Brazil’s largest coal mine, the Candiota Mine. The water is dominated by SO4, Fe, Ca, and Mg. A pH range of 2.7–3 in the pit lakes is attributed through chemical models to concomitant pyrite oxidation and carbonate dissolution along with slow hydrolysis of aluminosilicate minerals and buffering provided by several iron oxy-hydroxide species. The Fe deficit of the surface water relative to the expected values is mainly due to precipitation of Fe sulfate salts, hydroxysulfates, and oxyhydroxides in the waste piles and their runoff. A progressive decrease in oxygen partial pressure with increased lake depth leads to destabilization of the iron oxyhydroxides/hydroxysulfates formed near the surface, which explains their absence from the lake sediment. Although interacting with similar rock types, the groundwater has a significantly different composition than the surface water, with less salinity and a pH of 5–6.5, due to limited oxygen and its evolution in a nearly closed system that stabilizes at higher pH values, which is controlled by carbonate/bicarbonate buffering.

Zusammenfassung

Die Arbeit widmet sich der Untersuchung des Zusammenhangs von Oberflächen- und Grundwasserbeschaffenheiten mit den Eigenschaften der Gesteinssubstrate sowie der geochemischen Entwicklung der Wässer im Bereich von Brasiliens größter Kohlengrube, der Candiota-Mine. Die Wässer werden dominiert von SO4, Fe, Ca und Mg. Der in den Tagebauseen beobachtete pH-Wert-Bereich von 2,7–3 lässt sich chemischen Modellrechnungen zufolge auf Pyritoxidation und zeitgleiche Karbonatlösung sowie langsame Hydrolyse von Alumosilikaten und Pufferung durch verschiedene Eisenoxidhydratphasen zurückführen. Das im Vergleich zu den Erwartungswerten auffällige Eisendefizit der Oberflächenwässer wird hauptsächlich auf die Fällung von Eisensulfaten, -hydroxysulfaten und -oxidhydraten in den Halden und deren Sickerwässern zurückgeführt. Der in den Tagebauseen beobachtete Rückgang des Sauerstoffpartialdrucks mit der Tiefe führt zur Auflösung der oberflächennah gebildeten Oxidhydrate/Hydroxysulfate und erklärt deren Fehlen im Seesediment. Obwohl mit den gleichen Gesteinstypen interagierend, weicht die Beschaffenheit der Grundwässer signifikant von der der Oberflächenwässer ab. Fur Grundwässer typist send niedrigere Salzgehalte und pH-Werte zwischen 5 und 6,5, was auf deren Entwicklung in einem nahezu geschlossenen System bei limitierter Sauerstoffverfügbarkeit zurückgeführt wird, wobei das stabil höhere pH-Wert-Niveau auf Karbonat-/Bikarbonatpufferung beruht.

Resumen

Este trabajo correlaciona la composición de las aguas de superficie y subterráneas con el sustrato y traza cómo evoluciona la química del agua en la mayor mina de carbón de Brasil, la mina Candiota. El agua es dominada por SO4, Fe, Ca y Mg. Un rango de pH entre 2,7–3 en los lagos formados en los hoyos de minas es atribuido, a través de modelos químicos, a la concomitante oxidación de pirita y la disolución de carbonatos junto con la lenta hidrólisis de minerales aluminosilicatos y el efecto buffer provisto por varias especies de oxi-hidroxos de hierro. El déficit de Fe en el agua de superficie respecto de los valores esperados, es principalmente debido a la precipitación de sulfatos de hierro, hidroxisulfatos y oxi-hidroxos en las pilas de residuos y su escurrimiento. Un progresivo decrecimiento en la presión parcial de oxígeno al aumentar la profundidad en el lago, provoca la desestabilización de los oxihidroxos e hidroxisulfatos de hierro formados cerca de la superficie, lo que explica su ausencia en los sedimentos del lago. Aunque interacciona con rocas similares, el agua subterránea tiene una composición significativamente diferente al agua de superficie, con menos salinidad y un pH de 5–6,5, debido a la limitación de oxígeno y su evolución en un sistema prácticamente cerrado que se estabiliza a mayores valores de pH controlados por el buffer carbonato/bicarbonato.

摘要

本文研究了坎迪奥塔煤矿(Candiota Mine)地表水和地下水组分特征及其与矿区地层组成之间的成因关系,分析了地表水体中化学元素的分布与演化规律。坎迪奥塔煤矿(Candiota Mine)是巴西最大的煤矿,矿区地表水呈较强酸性。地表水的主要成分为简单的离子态SO 2-4 、Fe、Ca和Mg,另有少量硫酸盐络合物(1~30 %)。化学模型分析表明,地表矿坑水呈酸性(pH = 2.7~3.0)的主要原因是由于煤矿床伴生黄铁矿的氧化、碳酸盐的溶解、铝硅酸盐矿物缓慢水解及氢氧化铁缓冲等共同作用的结果。地表水中Fe含量低于地质背景值,主要是由于浅表矸(废)石堆及地表径流为氧化环境,铁的硫酸盐、羟基硫酸盐和氢氧化物已经发生沉淀反应造成的。随着深度增加,地表矿坑湖水氧气分压不断下降,矿坑湖浅表形成的铁氢氧化物/羟基硫酸盐失去稳定性,该原理解释了为什么矿坑湖底沉积物缺少含铁沉淀。虽然水-岩接触的类型相似,但矿区地下水组成与地表水明显不同。地下水在近乎封闭、含氧有限、高pH值、受碳酸盐/重碳酸盐缓冲体系控制的环境中形成的,所以矿区地下水盐度低、pH值在5.0-6.5之间。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alpers CN, Blowes DW, Nordstrom DK, Jambor JL (1994) Secondary minerals and acid mine-water chemistry. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, mineral assoc Canada short course, vol 22, pp 247–270

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals—crystallography, geochemistry, and environmental significance, Mineral Soc Amer 40, Washington, DC, USA, pp 351–403

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  Google Scholar 

  • Braungardt CB, Achterberg EP, Elbaz-Poulichet F, Morley NH (2003) Metal geochemistry in a mine polluted estuarine system in Spain. Appl Geochem 18:1757–1771

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DG (2008) Schwertmannite transformation to goethithe via the Fe(II) pathway: reaction rates and implications for iron-sulfide formation. Geochim Cosmochim Acta 72:4551–4564

    Article  Google Scholar 

  • Casiot C, Morin G, Juillot F, Bruneel O, Personné J, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936

  • Casiot C, Egal M, Elbaz-Poulichet F, Bruneel O, Banco-Montigny C, Cordier M, Gomez E, Aliaume C (2009) Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl Geochem 24:787–799

    Article  Google Scholar 

  • Correa da Silva ZC (1993) Candiota coal field: a world class Brazilian coal deposit. Int J Coal Geol 23:103–116

    Article  Google Scholar 

  • Cravotta CA III (2008) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: geochemical controls on constituent concentrations. Appl Geochem 23:203–226

    Article  Google Scholar 

  • Daemon RF, Marques-Toigo M (1991) An interpreted biostratigraphic column for the Paraná Basin, Brazil. In: Proceedings of the international congress on carboniferous-permian geology and stratigraphy, Buenos Aires, Argentina

  • DNPM (2006) Brazilian mineral yearbook—part III: statistics by commodities. DNPM/MME. http://www.dnpm.gov.br/assets/galeriaDocumento/AMB2006/substancia%20a-e.pdf, Accessed June 2009

  • Dupre B, Gaillardet J, Rousseau D, Allegre CJ (1996) Major and trace element in river borne material: the Congo Basin. Geochim Cosmochim Acta 60:1301–1321

    Article  Google Scholar 

  • Edraki M, Golding SD, Baublys KA, Lawrence MG (2005) Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia. Appl Geochem 20:789–805

    Article  Google Scholar 

  • Elbaz-Poulichet F, Morley NH, Beckers Cruzado A, Velazquez Z, Green D, Achterberg EP, Braungardt CB (1999) Trace metal and nutrient distribution in an extremely low pH (2.5) river estuarine system, the Ria El Huelva (south west Spain). Sci Total Environ 227:73–83

    Article  Google Scholar 

  • Elbaz-Poulichet F, Morley NH, Beckers JM, Nomerange P (2001) Metal geochemistry in a mine polluted estuarine system in Spain. Appl Geochem 18:1757–1771

    Google Scholar 

  • Fiedler H, Solari J (1988) Caracterização do impacto ambiental da mina de Candiota sobre as águas superficiais da região. Anais do Encontro Nacional de Tratamento de Minérios e Hidrometalurgia, São Paulo, ABES, Brazil 13:483–498

    Google Scholar 

  • Fiedler H, Martins AF, Solari J (1990) Meio ambiente e complexos carboelétricos: o caso de Candiota. Ciência Hoje 68:38–45

    Google Scholar 

  • Gammons CH, Duaime TE, Parker SR, Poulson SR, Kennelly P (2010) Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA. Chem Geol 269:100–112

    Article  Google Scholar 

  • Hammastrom JM, Seal RR, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431

    Article  Google Scholar 

  • Holz M (1998) The Eo-Permian coal seams of the Paraná Basin in southernmost Brazil: an analysis of the depositional conditions using sequence stratigraphy concepts. Int J Coal Geol 36:141–163

    Article  Google Scholar 

  • Holz M, Kalkreuth W (2004) Sequence stratigraphy and coal petrology applied to the early permian coal-bearing rio bonito formation, Paraná Basin, Brazil. In: Pashin J, Gastaldo R (eds) Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata, AAPG studies in geology vol 51, pp 147–167

  • Jambor JL (1994) Mineralogy of sulfide-rich tailings and their oxidation products. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulfide mine-wastes, Mineral Assoc Canada Short Course vol 22, pp 59–102

  • Kalkreuth W, Holz M, Kern M, Machado G, Mexias A, Silva MB, Willet J, Finkelman R, Burger H (2006) Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota coal fields, Rio Grande do Sul, Brazil. Int J Coal Geol 68:79–116

    Article  Google Scholar 

  • Ketzer JM, Holz M, Morad S, Al-Aasm IS (2003) Sequence stratigraphic distribution of diagenetic alterations in coal-bearing, paralic sandstones: evidence from the Rio Bonito Formation (early Permian), southern Brazil. Sedimentology 50:855–877

    Article  Google Scholar 

  • Machado JFL (1985) Mineração de carvão: contaminação e vulnerabilidade dos mananciais. Boletim de Resumos Expandidos do II Simpósio Sul-Brasileiro de Geologia, Florianópolis, SBG, Brazil 1:539–553

    Google Scholar 

  • Machado JLF, Peruffo N, Luna JES (1984) Projeto de Estudo da Vulnerabilidade à Contaminação dos Mananciais Subterrâneos Decorrente da Extração do Carvão Mineral. CPRM internal report

  • Martins AF, Zanella R (1987) Análise de águas de superfície e de profundidade da região de Candiota, RS: determinação da concentração de elementos traços de relevância ambiental, elementos menores e macroelementos. Proc Anais do I Congresso Brasileiro de Geoquímica, Porto Alegre, SBG, Brazil 2:217–223

    Google Scholar 

  • Martins AF, Zanella R (1990) Estudo analítico-ambiental na região carboenergética de Candiota, Bagé (RS). Ciência e Cultura 42:264–270

    Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1988) Pyrite oxidation in carbonate-buffered solution: 1. experimental kinetics. Geochim Cosmochim Acta 52:1077–1085

    Article  Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1990) Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochim Cosmochim Acta 54:395–402

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96:3455–3462

    Article  Google Scholar 

  • Pankhurst DL, Appelo CAJ (1999) User’s guide to PHRE-EQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS WRI Rept 99-4259, Washington DC, USA

  • Patzkowsky ME, Smith LH, Markwick PJ, Engberts CJ, Gyllenhaal (Ed) (1991) Application of the Fuijita-Ziegler paleoclimatic model: early Permian and late Cretaceous examples. Palaeogeogr, Palaeoclimatol, Palaeoecol 86:67–85

  • Pérez MA, Moreira-Turcq P, Gallard H, Allard T, Benedetti MF (2011) Dissolved organic matter dynamic in the Amazon basin: sorption by mineral surfaces. Chem Geol 286:158–168

    Google Scholar 

  • Pires M, Querol X (2004) Characterization of Candiota (South Brazil) coal and combustion byproducts. Int J Coal Geol 60:57–72

    Article  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52:5–23

    Article  Google Scholar 

  • Sánchez España J (2007) The behavior of iron and aluminum in acid mine drainage: speciation, mineralogy, and environmental significance. In: Letcher TM (ed) Thermodynamics, solubility and environmental issues. Elsevier, Amsterdam, pp 137–150

    Chapter  Google Scholar 

  • Sánchez España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005a) Acid mine drainage in the Iberian Pyrite belt (Odiel River watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Article  Google Scholar 

  • Sánchez España J, Lopez Pamo E, Santofimia Pastor E, Reyes Andres J, Martin Rubi J (2005b) The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environ Geol 49:253–266

    Article  Google Scholar 

  • Sánchez España J, Yusta I, Diez-Ercilla M (2011) Schwertmannite and hydrobasaluminite: a re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Appl Geochem 26:1752–1774

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. the influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688

    Article  Google Scholar 

  • Streck CD (2001) Estudo da qualidade das águas superficiais e estimativa dos fluxos de elementos-traço na região de Candiota, RS. Diss, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, UK

    Google Scholar 

  • Teixeira EC, Sanchez JCD, Migliavacca D, Binotto R, Fachel JMG (2000) Environmental assessment: study of metals in fluvial sediments in sites impacted by coal processing and steel industry activities. Fuel 79:1539–1546

    Article  Google Scholar 

  • Tosiani T, Loubet M, Viers J, Valladon M, Tapia J, Marrero S, Yanes C, Ramirez A, Dupre B (2004) Major and trace elements in river-borne materials from the Cuyuni basin (southern Venezuela): evidence for organo-colloidal control on the dissolved load and element redistribution between suspended and dissolved load. Chem Geol 211:305–334

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Brazilian National Research Council (CNPQ—research grant 472766/2003-1). The authors gratefully acknowledge Companhia Riograndense de Mineração (CRM) for logistical support and for allowing access to the well cores, sample materials, and the Candiota Mine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Roisenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10230_2015_330_MOESM1_ESM.doc

Supplementary material 1 Supplemental Table 1. Major elements contents of surface waters and groundwaters from the Candiota Mine (DOC 237 kb)

10230_2015_330_MOESM2_ESM.doc

Supplementary material 2 Supplemental Table 2: X-ray mineralogical identification of solid materials from the Candiota Mine (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roisenberg, C., Loubet, M., Formoso, M.L. et al. Tracing the Origin and Evolution of Geochemical Characteristics of Waters from the Candiota Coal Mine Area (Southern Brazil): Part I. Mine Water Environ 35, 29–43 (2016). https://doi.org/10.1007/s10230-015-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0330-z

Keywords

Navigation