Skip to main content

Advertisement

Log in

Hydrogeochemistry and Contamination of Trace Elements in Cu-Porphyry Mine Tailings: A Case Study from the Sarcheshmeh Mine, SE Iran

Hydrochemie und Kontamination durch Spurenelemente in Tailings von Porphykupfererz: Eine Fallstudie von der Grube Sarcheshme im Südost-Iran

Hidroquímica y Contaminación de Elementos Traza en las Colas de Minas de Cu Porfirítico; Un Caso de Estudio en la Mina Sarcheshmeh, SE Irán

斑岩铜矿尾矿中微量元素的水文地球化学和污染特性:以伊朗东南Sarcheshmeh铜矿为例

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Geochemical and hydrochemical investigations were performed to understand the contamination potential of the Sarcheshmeh mine tailings. The geochemical mobility for the tailings is as follows: Cu > Cd > Co > Zn > Ni > Mn > S > Cr > Sn > As > Se > Fe = Bi > Sb = Pb = Mo. Highly mobile and contaminant elements (Cd, Cu, Zn, Mn, Co, Ni, S, and Cr), which significantly correlated with each other, were mainly concentrated in the surface evaporative layer of the old, weathered tailings, due to the high evaporation rate, which causes subsurface water to migrate upward via capillary action. The contamination potential associated with the tailings is controlled by: (1) dissolution of secondary evaporative soluble phases, especially after rainfall on the old weathered tailings, accompanied by low pH and high contamination loads of Al, Cd, Co, Mg, Cr, Cu, Mn, Ni, S, Se, and Zn; (2) processing of the Cu-porphyry ore under alkaline conditions, which is responsible for the high Mo (mean of 2.55 mg/L) and very low values of other contaminants in fresh tailings in the decantation pond; (3) low mobility of As, Fe, Pb, Sb, Mo, and Sn due to natural adsorption and co-precipitation in the tailings oxidizing zone. Speciation modeling showed that sulfate complexes (MSO4 +, M(SO4)(aq), M(SO4) −22 , and M(SO4) 2 ) and free metal species (M+2 and M+3) are the dominant forms of dissolved cations in the acidic waters associated with the weathered tailings. In the alkaline and highly alkaline waters, trace element speciation was controlled by various hydroxide complexes, such as M(OH)+, M(OH) 3 , M3(OH) +24 , M2(OH) +3 , M(OH)2(aq), M(OH) −24 , Me(OH) +2 , Me(OH) 4 , Me(OH) +2 , Me(OH)3(aq), and Me(OH) 4 (where M represents bivalent and Me represents trivalent cations). The speciation pattern of As, Mo, and Se is mainly dominated by oxy-anion forms. The obtained results can be used as a basis for environmental management of the Cu-porphyry mine tailings.

Zusammenfassung

Zur Klärung des Kontaminationspotentials der Tailings der Grube Sarcheshmeh wurden geochemische und hydrochemische Untersuchungen durchgeführt. Die geochemische Mobilität in den Tailings war wie folgt: Cu > Cd > Co > Zn > Ni > Mn > S > Cr > Sn > As > Se > Fe = Bi > Sb = Pb = Mo. Sehr mobile und kontaminierende Elemente (Cd, Cu, Zn, Mn, Co, Ni, S und Cr), die untereinander signifikant korrelierten, waren vor allem in der Oberflächen-Verdunstungsschicht der alten, verwitterten Tailings angereichert, bedingt durch die hohe Verdunstungsrate und den kapillare Aufstieg von Wasser. Das Kontaminationspotential der Tailings wird bestimmt durch: (1) Auflösung löslicher, sekundärer, evaporativer Phasen, insbesondere nach Regen auf den alten, verwitterten Tailings, verbunden mit niedrigem pH-Wert und hohen Frachten von Al, Cd, Co, Mg, Cr, Cu, Mn, Ni, S, Se und Zn; (2) Umsetzung von Porphyrkupfererz unter alkalischen Bedingungen, was für die hohen Mo-Konzentrationen (Mittelwert 2,55 mg/L) und die sehr niedrigen Konzentrationen anderer Kontaminanten in frischen Tailings im Dekantierungsbecken verantwortlich ist; (3) niedrige Modilität von As, Fe, Pb, Sb, Mo und Sn wegen der natürlichen Adsorption und Mitfällung in der Tailings-Oxidationszone. Speziationsberechnungen zeigten, dass Sulfatkomplexe (MSO4 +, M(SO4)(aq), M(SO4) 2−2 ) und freie Metallspezies (M2+ und M3+) die dominierenden Formen der Metallionen in sauren Wässern der verwitterten Tailings waren. In den alkalischen und sehr alkalischen Wässern wurde die Spurenelementspziation durch Hydroxokomplexe bestimmt, wie z.B. M(OH)+, M(OH) 3 , M3(OH) 2+4 , M2(OH) +3 , M(OH)2(aq), M(OH) 2−4 , Me(OH) +2 , Me(OH) 4 , Me(OH) +2 , Me(OH)3(aq), and Me(OH) 4 (wobei M bivalente und Me trivalente Kationen repräsentieren). Das Speziationsmuster von As, Mo und Se wurde durch Oxi-Anionen dominiert. Die Ergebnisse können als Basis für das Umweltmanagement der Porphyrkupfererz-Tailings verwendet werden.

Resumen

Se realizaron investigaciones geoquímicas e hidroquímicas para comprender el potencial contaminante de las colas de la mina Sarcheshmeh. La movilidad geoquímica de las colas es la siguiente: Cu > Cd > Co > Zn > Ni > Mn > S > Cr > Sn > As > Se > Fe = Bi > Sb = Pb = Mo. Los elementos contaminantes y de alta movilidad (Cd, Cu, Zn, Mn, Co, Ni, S y Cr), que se correlacionan significativamente entre sí, estaban principalmente concentrados en la capa superficial de las colas erosionadas debido a la alta tasa de evaporación que causa que el agua subsuperficial migre hacia arriba por acción capilar. La potencial contaminación de las colas está controlada por: (1) disolución de fases secundarias solubles especialmente después de lluvias sobre las colas erosionadas, acompañadas por bajo pH y cargas de alta contaminación de Al, Cd, Co, Mg, Cr, Cu, Mn, Ni, S, Se y Zn; (2) procesamiento de mineral de Cu porfirítico bajo condiciones alcalinas que es responsables por alta concentración de Mo (promedio de 2,55 mg/L) y muy bajos valores de otros contaminantes en colas recientes en el dique de decantación; (3) baja movilidad de As, Fe, Pb, Sb, Mo y Sn debido a la adsorción natural y la coprecipitación en la zona oxidante de las colas. El modelado de la especiación mostró que los complejos sulfatados (MSO4 +, M(SO4)(aq), M(SO4) −22 , y M(SO4) 2 ) y las especies metálicas libres (M+2 y M+3) son las formas dominantes de los cationes disueltos en aguas ácidas asociadas a las colas erosionadas. En las aguas alcalinas y altamente alcalinas, la especiación de los elementos traza fue controlada por varios hidroxo complejos tales como M(OH)+, M(OH) 3 , M3(OH) +24 , M2(OH) +3 , M(OH)2(ac), M(OH) −24 , Me(OH) +2 , Me(OH) 4 , Me(OH)2 +, Me(OH)3(ac) y Me(OH) 4 (donde M representa catión bivalente y Me representa catión trivalente). El patrón de especiación de As, Mo y Se está principalmente dominado por las formas oxoaniónicas. Los resultados obtenidos pueden ser usados como una base para la manipulación ambiental de las colas de minas de Cu porfirítico.

抽象

本文通过地球化学和水化学方法研究了Sarcheshmeh 铜矿矿尾的污染潜力。尾矿中微量元素的地球化学活性顺序如下:Cu > Cd > Co > Zn > Ni > Mn > S > Cr > Sn > As > Se > Fe = Bi > Sb = Pb = Mo。由于强烈蒸发作用,深层地下水在毛细管作用下向上运移,易迁移污染物(Cd, Cu, Zn, Mn, Co, Ni, S, 和 Cr)富集于尾矿堆浅部的、早期风化的蒸发层,易迁移污染物之间存在着明显关联性。与尾矿相关的污染潜力受控于以下因素:(1)污染物次生易蒸发溶解相的溶解;尤其当雨水降落至早期风化尾矿表面之后,会伴随低pH值和Al、 Cd、Co、Mg、Cr、Cu、 Mn、Ni、S、Se和 Zn高污染负荷;(2)碱性条件下的斑岩铜矿石处理;它是造成倾析池中新鲜尾矿的高浓度Mo (平均浓度2.55 mg/L)污染和低浓度其他污染物的原因;(3)As、Fe、Pb、Sb、Mo和Sn的低迁移活性;它们是尾矿氧化区自然吸附作用和共沉淀作用的结果。形态分析结果表明:硫酸盐络合离子(MSO4 +, M(SO4)(aq)、 M(SO4) −22 和M(SO4)2−)和自由金属离子(M+2 and M+3)是尾矿风化形成的酸性废水中的溶解阳离子的主要形态;在碱性和高碱性废水中,微量元素形态受由各种羟基络合离子控制,例如M(OH)+, M(OH) 3 , M3(OH) +24 , M2(OH) +3 , M(OH)2(aq), M(OH) −24 , Me(OH) +2 , Me(OH) ¯4 Me(OH)2 +, Me(OH)3(aq), 和 Me(OH) ¯4 (M代表二价阳离子和Me代表三价阳离子);As、Mo和Se元素主要以含氧阴离子为主。研究结果为斑岩铜矿尾矿环境管理提供了研究基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

    Article  Google Scholar 

  • Anbar AD (2004) Molybdenum stable isotopes: observations, interpretations and directions. Rev Miner Geochem 55:429–454

    Article  Google Scholar 

  • Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geochem Explor 93:47–65

    Article  Google Scholar 

  • Bea SA, Ayora C, Carrera J, Saaltink MW, Dold B (2010) Geochemical and environmental controls on the genesis of soluble efflorescent salts in coastal mine tailings deposits: a discussion based on reactive transport modeling. J Contam Hydrol 111:65–82

    Article  Google Scholar 

  • Berger BR, Ayuso RA, Wynn JC, Seal RR (2008) Preliminary model of porphyry copper deposits. USGS Open-File Report 1321, Washington, USA

  • Bjelkevik A (2005) Water cover closure design for tailings dams. State of the art report. Dept of Civil and Environmental Eng, Luleå Univ of Technology, Sweden

    Google Scholar 

  • Blowes DW, Reardon EJ, Cherry JA, Jambor JL (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55:965–978

    Article  Google Scholar 

  • Blowes DW, Lortie Gould WD, Jambor JL, Hanton-Fong CJ (1998) Geochemical, mineralogical and microbiological characterization of sulfide-bearing carbonate-rich gold-mine tailings impoundents, Joutel, Quebec. Appl Geochem 13:387–705

    Article  Google Scholar 

  • Bodek I, Lyman WJ, Reehl RF, Rosenblatt DH (1988) Environmental inorganic chemistry properties, processes and estimation methods. Pergamon Press, New York, pp 7.1-1–7.1-5

  • Boyle RW (1974) The use of major elemental ratios in detailed geochemical prospecting utilizing primary halos. J Geochem Explor 3:345–369

    Article  Google Scholar 

  • Candeias C, Ferreira da Silva E, Salgueiro ar, Pereira HG, Reis AP, Patinha C, Matos jx, Avila PH (2011) The use of multivariate statistical analysis of geochemical data for assessing the spatial distribution of soil contamination by potentially toxic elements in the Aljustrel mining area (Iberian Pyrite Belt, Portugal). Environ Earth Sci 62:1461–1479

    Article  Google Scholar 

  • Chaparro MAE, Chaparro MAE, Rajkumar P, Ramasamy V, Sinito AM (2011) Magnetic parameters, trace elements, and multivariate statistical studies of river sediments from southeastern India: a case study from the Vellar River. Environ Earth Sci 63:297–310

    Article  Google Scholar 

  • Coggans CL, Blowes DW, Robertson WD, Jambor JL (1999) The hydrogeochemistry of nickel-mine tailing impoundments—Copper Cliff, Ontario. In: Filipek LH, Plumlee GS (eds), Environmental geochemistry of mineral deposits. Rev Econ Geol Soc 6B:447–456

  • Cravotta CA (1994) Secondary iron-sulfate minerals as sources of sulfate and acidity. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. Am Chem Soc Symp Ser 550:345–364

  • DelValls TA, Forja JM, Gonzalez-Mazo E, Gomez-Parra A (1998) Determining contamination sources in marine sediments using multivariate analysis. Trends Anal Chem 17:181–192

    Article  Google Scholar 

  • Dimitrijevic MD (1973) Geology of the Kerman Region. Institute for geological and mining exploration and investigation of nuclear and other mineral raw material. Iran Geol Survey Rept Yu/52, Beograd, Yugoslavia

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:2–55

    Article  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxides. Wiley, New York City

    Google Scholar 

  • Emmerson RHC, O’Reilly-Wiese SB, Macleod CL, Lester JN (1997) A multivariate assessment of metal distribution in inter-tidal sediments of the Blackwater Estuary, UK. Mar Pollut Bull 34:960–968

    Article  Google Scholar 

  • Ferris FG, Hallberg RO, Lyven B, Pedersen K (2000) Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment. Appl Geochem 15:1035–1042

    Google Scholar 

  • Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption on oxides, clay minerals, and soils. Soil Sci Soc Am J 60(2):425–432

    Article  Google Scholar 

  • Grangeia C, Ávila P, Matias M, Ferreira da Silva E (2011) Mine tailings integrated investigations: the case of Rio tailings (Panasqueira Mine, Central Portugal). Eng Geol 123:359–372

    Article  Google Scholar 

  • Gustafsson JP (2000) Visual MINTEQ version 3. Land and water resources engineering. Teknikringen KTH (Royal Inst of Technology), Stockholm

    Google Scholar 

  • Hezarkhani H (2006) Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions. J Asian Earth Sci 28:409–422

    Article  Google Scholar 

  • Holmström H, Ohlander B (1999) Oxygen penetration and subsequent reactions in flooded sulphidic mine tailings: a study at Stekenjokk, northern Sweden. Appl Geochem 14:747–759

    Article  Google Scholar 

  • Holmström H, Salmon UJ, Carlsson E, Petrov P, Öhlander B (2001) Geochemical investigations of sulfide-bearing tailings at Kristineberg, northern Sweden, a few years after remediation. Sci Total Environ 273:111–133

    Article  Google Scholar 

  • Jacob DL, Otte ML (2004) Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond. Environ Pollut 130:337–345

    Article  Google Scholar 

  • Johnson RH, Blowes DW, Robertson WD, Jambor JL (2000) The hydrogeochemistry of the Nickel Rim mine tailings impoundment, Sudbury, Ontario. J Contam Hydro l41:49–80

    Article  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kelepertzis E, Argyraki A, Daftsis E (2012) Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: a pre-mining survey. J Geochem Explor 114:70–81

    Article  Google Scholar 

  • Khorasanipour M, Moore F, Naseh R (2011a) Lime treatment of mine drainage at the Sarcheshmeh porphyry copper mine, Iran. Mine Water Environ 30:216–230

    Article  Google Scholar 

  • Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2011b) Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine, SE Iran. Appl Geochem 26:714–730

    Article  Google Scholar 

  • Khorasanipour M, Tangestani MH, Naseh R (2012) Application of multivariate statistical methods to indicate the origin and geochemical behavior of potentially hazardous elements in sediment around the Sarcheshmeh copper mine, SE Iran. Environ Earth Sci 66:589–605

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall Inc, New York City, ISBN 10:0023674121

  • Laxen DPH, Harrison RM (1983) The physio-chemical speciation of selected metals in the treated effluent of a lead-acid battery manufacturer and its effect on metal speciation in the receiving water. Water Res 17:71–80

    Article  Google Scholar 

  • Lin Z (1997) Mineralogical and chemical characterization of wastes from the Sulfuric acid industry in Falun, Sweden. Environ Geol 39:152–162

    Article  Google Scholar 

  • Loska K, Wiechuła D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723–733

    Article  Google Scholar 

  • Lottermoser BG (2003) Mine waste: characterization, treatment and environmental impacts. Springer, Berlin

    Book  Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry, 4th edn. Wiley, NewYork city

    Google Scholar 

  • McGregor RG, Blowes DW (2002) The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings. J Geochem Explor 76:195–207

    Article  Google Scholar 

  • McSweeney K, Madison FW (1988) Formation of a cemented surface horizon in sulfidic mine waste. J Environ Qual 17:256–262

    Article  Google Scholar 

  • MiMi (2004) Mitigation of the environmental impact from mining waste. In: Höglund LO, Herbert R (eds) MiMi-performance assessment main report. MiMi, Luleå, Sweden, MiMi 2003:3, ISSN 1403-9478. www.mistra.org/mimi

  • Nickel E (1973) Experimental dissolution of light and heavy minerals in comparison with weathering and intrastitial solution. Contrib Sedimentol 1:1–68

    Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. Environ Geochem Miner Depos 6A:133–160

    Google Scholar 

  • NTP (National Toxicology Program) (1991) Cadmium and certain cadmium compounds. In: 7th annual report on carcinogens, summary. US Public Health Service, Dept of Health and Human Services, Washington, DC, USA, pp 114–121

  • Plumlee GS, Smith KS, Montour MR, Fichlin WH, Mosier EL (1999) Geologic control on the composition of natural waters and mine waters drainage diverse minerals-deposit types. In: Filipek LH, Plumlee GS (eds) Environmental geochemistry of mineral deposits. Rev Econ Geol 6B:373–432

  • Pokrovski G, Gout R, Schott J, Zotov A, Harrichoury JC (1996) Thermodynamic properties and stoichiometry of As (III) hydroxide complexes at hydrothermal conditions. Geochim Cosmochim Acta 60:737–749

    Article  Google Scholar 

  • Roddick-Lanzilotta AJ, McQuillan AJ, Craw D (2002) Infrared spectroscopic characterization of arsenate (V) ion adsorption from mine waters, Macreas mine, New Zealand. Appl Geochem 17:445–454

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Treatise on geochemistry, vol 3. Elsevier, Netherlands, pp 1–64

    Book  Google Scholar 

  • Sarafian PG, Furbish WJ (1965) Solubilities of natural and synthetic ferrimolybdite. Am Mineral 50:223–226

    Google Scholar 

  • Saxena M, Dhimole LK (2006) Utilization and value addition of copper tailing as an extender for development of paints. J Hazard Mater 129:50–57

    Article  Google Scholar 

  • Shahabpour J, Doorandish M (2007) Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran. Environ Monit Assess 141:105–120

    Article  Google Scholar 

  • Shahabpour J, Kramers JD (1987) Lead isotope data from the Sarcheshmeh porphyry copper deposit, Iran. Miner Deposita 22:275–281

    Google Scholar 

  • Sima M, Dold B, Frei L, Senila M, Balteanu D, Zobrist J (2011) Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. J Hazard Mater 189:624–639

    Article  Google Scholar 

  • Skousen J, Politan K, Hilton T, Meek A (1990) Acid mine drainage treatment systems: chemicals and coasts. Green Lands 20(4):31–37

    Google Scholar 

  • Smuda J, Dold B, Spangenberg JA, Pfeifer HR (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76

    Article  Google Scholar 

  • Spears DA, Tarazona MRM, Lee S (1994) Pyrite in UK coals: its environmental significance. Fuel 37:1051–1055

    Article  Google Scholar 

  • US EPA (US Environmental Protection Agency) (2009) National primary and secondary regulations. http://www.epa.gov/safewater

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge earth science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revised: temperature and composition effects in a variety of crystal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Webster R (2001) Statistics to support soil research and their presentation. Eur J Soil Sci 52:331–340

    Article  Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality. 1st addendum to 3rd edn, vol 1. World Health Organization Geneva

  • WHO (World Health Organization) (2004) Guidelines for drinking-water quality, 3rd edn, vol 1. World Health Organization, Geneva, pp 488–496

  • Witczak S, Adamczyk A (1995) Catalog of selected physical and chemical indicies for ground water contamination, and analytical methods. Bibl Monitor Þrodowiska, Warszawa (in Polish) In: Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Google Scholar 

  • Wu P, Tang CY, Liu CQ, Zhu LJ, Pei TQ, Feng LJ (2009) Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in southwestern China. Environ Geol 57(7):1457–1467

    Article  Google Scholar 

  • Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  Google Scholar 

  • Zhao H, Xia B, Qin J, Zhang J (2012) Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China. J Environ Sci 24(6):979–989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Khorasanipour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10230_2014_272_MOESM1_ESM.pdf

Fig. S-1. (A) Central Iranian tectono-volcanic belt and location of the Sarcheshmeh porphyry copper deposit (Modified after Shahabpour and Kramers 1987); (B) Geological map around the Sarcheshmeh tailings impoundment. (PDF 302 kb)

Supplementary material 2 (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorasanipour, M., Eslami, A. Hydrogeochemistry and Contamination of Trace Elements in Cu-Porphyry Mine Tailings: A Case Study from the Sarcheshmeh Mine, SE Iran. Mine Water Environ 33, 335–352 (2014). https://doi.org/10.1007/s10230-014-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0272-x

Keywords

Navigation