Skip to main content
Log in

Mineralogical and Geochemical Characterization of Mine Tailings and Pb, Zn, and Cd Mobility in a Carbonate Setting (Northern Tunisia)

Mineralogische und geochemische Eigenschaften von Aufbereitungsabgängen—Umweltauswirkung der Mobilität von Pb, Zn und Cd in karbonatischem Milieu (nördliches Tunesien)

Caracterización mineralógica y geoquímica de las colas de mina y el impacto ambiental de la movilidad de Pb, Zn y Cd en un medio de carbonatos (norte de Túnez)

突尼斯北部碳酸盐岩背景区尾矿的矿物学和 地球化学特征及其Pb、Zn、Cd活性对环境的影响

  • Techinical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Millions of tonnes of Pb–Zn ore flotation tailings and waste rock have been discharged at sites in northern Tunisia without concern for environmental issues. The tailings are dominantly fine grained (<125 μm), with high porosity and permeability. The tailings were characterized to assess base metal (Pb, Zn, and Cd) mobility. The relatively low percentage of iron sulphide and the dominance of carbonates in the matrices of the tailings indicated that only neutral mine drainage is likely. Batch sequential testing showed that the calcium and sulphate, which are the major ionic species in solution, are derived mainly from the dissolution of gypsum and not from neutralization of acidity generated by pyrite oxidation. Yet, despite the carbonate setting, the resultant neutral to slightly alkaline pH, and prolonged weathering, the studied flotation tailings maintain their capacity to release contaminants, notably Zn and Cd, into the environment. The amount of Zn that dissolves (2,400 μg L−1, on average), though significant, is below the background concentrations in the Mejerda River and the environmental norms established for surface waters. Pb concentrations come close to the standards, but only Cd (18 μg L−1, on average) sometimes exceeds current river water concentrations and environmental standards.

Zusammenfassung

Der Pb–Zn Bergbau im nördlichen Tunesien hinterließ Millionen Tonnen von Bergehalden und Flotationsabgängen, welche ohne Rücksicht auf Umweltbelange abgelagert wurden. Die Flotationsabgänge sind überwiegend feinkörnig (<125 µm) und haben hohe Porosität und Permeabilität. Diese Arbeit dient der Einschätzung der Mobilität von Buntmetallen (Pb, Zn und Cd), welche in den Abgängen enthalten sind. Der darin relativ geringe Anteil von Eisensulfiden und die Dominanz von Karbonaten in der Gangart lassen vermuten, dass Sickerwässer neutral sind. Sequentielle Lösungsversuche zeigen, dass Kalzium und Sulfat als wichtigste Ionen überwiegend aus der Lösung von Gips stammen, nicht aus der Neutralisierung von Säure, welche durch Pyritverwitterung gebildet wurde. Trotz des karbonatischen Milieus und des resultierenden neutral bis gering alkalischen pH, sowie langjähriger Verwitterung, haben die Flotationsabgänge die Fähigkeit, die Kontaminanten Zn und Cd in die Umwelt abzugeben. Gelöstes Zn liegt im Durchschnitt bei 2,400 µg L−1; obwohl signifikant, ist diese Konzentration doch geringer als der Hintergrund im Fluß Mejerda und liegt auch unter den Grenzwerten für Oberflächenwässer. Pb liegt nahe an den Grenzwerten. Nur Cd (im Durchschnitt 18 µg L−1) erreicht in Einzelfällen höhere Konzentration als das Flusswasser bzw. die Umweltstandards.

Resumen

Millones de toneladas de colas de flotación de un mineral de Pb–Zn y residuos de roca han sido descargadas en el norte de Túnez sin ningún cuidado por el posible impacto ambiental. Las colas son predominantemente de grano fino (<125 µm), con alta porosidad y permeabilidad. Las colas fueron caracterizadas para relevar la movilidad de los metales bases (Pb, Zn y Cd). El relativo bajo porcentaje de sulfuro de hierro y la predominancia de carbonatos en la matriz de las colas indica que sólo es esperable drenaje de mina neutro. Pruebas en batchs secuenciales mostraron que calcio y sulfato, las principales especies iónicas en solución, provienen principalmente de la disolución de yeso y no de la neutralización de la acidez generada por la oxidación de pirita. Sin embargo, a pesar de la matriz de carbonatos, el pH resultante, neutro o ligeramente alcalino a través de un lavado prolongado liberan contaminantes (principalmente Zn y Cd) al medio ambiente, de las colas de flotación estudiadas. La cantidad de Zn que disuelve (2,400 µg L−1, en promedio), aunque significativo, es menor que las concentraciones propias del río Mejerda y de las que las normas ambientales establecen para aguas superficiales. Las concentraciones de Pb son cercanas a los estándares, mientras que Cd (18 µg L−1, en promedio) algunas excede las actuales concentraciones en el agua de río y los estándares ambientales.

抽象

在突尼斯北部,成千上万吨铅-锌矿石的浮选尾矿和废矿石在没有考虑环境影响的条件下遗留采场。这些尾矿粒径小(<125 祄)、孔隙度大、渗透性好,可用来评价铅、锌和镉等金属活性特征。尾矿主要由碳酸盐岩和少量黄铁矿组成,滤出液以中性矿山废水为特征。批次顺序测验表明,尾矿滤出液主离子Ca2+和SO4 2−的主要来源是石膏溶解,而不是黄铁矿的氧化、产酸及中和过程。虽然尾矿在碳酸盐岩环境中经历了长时间风化,也能使滤出液pH值维持中性至微碱性,但浮选尾矿仍具有向环境释放污染物(尤其是锌和隔离子)的能力。尽管锌离子浓度很高(平均浓度2,400 mg L−1),该值仍低于Mejerda河水的背景浓度和地表水环境质量标准。同时,铅离子浓度接近水质标准值,镉离子浓度(平均浓度18 mg L−1)有时会超过目前河水浓度及环境标准。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam K, Kourtis A, Gazea B, Kontopoulos A (1997) Evaluation of static test used to predict the potential for acid drainage generation at sulfide mine sites. Trans Inst Min Metall Sect A Min Indus 106:A1–A8

    Google Scholar 

  • Blanchard C (2000) Caractérisation de la mobilisation potentielle des polluants inorganiques dans les sols pollués. Thèse PhD, Institut National des Sciences Appliquées de Lyon, France

  • Brill H, Floc’h JP (2001) Le devenir des métaux provenant des anciennes mines; l’exemple du Massif Central français. Géologues 130(131):233–241

    Google Scholar 

  • Bussière B, Aubertin M, Zagoury M, Potvin R, Benzaazoua M (2005) Principaux défis et pistes de solution pour la restauration des sites miniers abandonnés. Actes du Symp sur l’Environnement et les mines, Rouyn-Noranda

    Google Scholar 

  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G (2006) Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere 63:244–253

    Article  Google Scholar 

  • Davranche M, Bollinger JC, Brill H (2003) Effect of reductive conditions on metal mobility from wasteland solids: an example from the Mortagne-du-Nord site (France). Appl Geochem 18:383–394

    Article  Google Scholar 

  • Deb D, Deshpande VN, Das KCh (2008) Assessment of water quality around surface coal mines using principal component analysis and fuzzy reasoning techniques. Mine Water Environ 27:183–193

    Article  Google Scholar 

  • EAD (Environmental Assurance Division)-Alberta (1999) Science and Standards Branch, Surface water quality guidelines for use in Alberta. http://environment.gov.ab.ca/info/library/5713.pdf

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulphide mine waste. J Geochem Explor 80:55–68

    Article  Google Scholar 

  • Dold B (2005) Basic concepts of environmental geochemistry of sulfide mine-waste XXIV Curso Latinoamericano de Metalogenia UNESCO-SEG “Mineralogía, geoquímica y geomicrobiología para el manejo ambiental de desechos mineros”, Del 22 de Agosto al 2 de Sept de 2005, Lima, Perú

  • Dold B, Fontboté L (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem Geol 189:135–163

    Article  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857

    Article  Google Scholar 

  • Ghorbel M, Souissi F, Souissi R, Munoz M, Courjault-Rade P, Destrigneville C (2008) Geochemical and mineralogical evolution of the Pb-Zn mining wastes of Jebel Ressas (north-eastern Tunisia). Proceedings International Symposium Gestion des Déchets Solides et Développement Durable, Hammamet, Tunisia, p 231–235

  • Ghorbel M, Munoz M, Courjault-Rade P, Destrigneville C, De Parseval P, Souissi R, Souissi F, Ben Mammou A, Abdeljaouad S (2010) Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miners’ village of Jebel Ressas (NE Tunisia). Eur J Miner 22:639–649

    Article  Google Scholar 

  • Gomes MEP, Antunes IMHR, Silva PB, Neiva AMR, Pacheco FAL (2010) Geochemistry of waters associated with the old mine workings at Fonte Santa (NE of Portugal). J Geochem Explor 105:153–165

    Article  Google Scholar 

  • Gupta SK, Vollmer MK, Krebs R (1996) The importance of mobile, mobilisable and pseudo-total heavy metal fractions in soil for three-level risk assessment and risk management. Sci Total Environ 178:11–20

    Article  Google Scholar 

  • Hakkou R (2008) Acid mine drainage at the abandoned Kettara Mine (Morocco): 2. Mine waste geochemical behavior. Mine Water Environ 27(3):160–170

    Article  Google Scholar 

  • Heikkinen PM, Räisänen ML, Johnson RH (2009) Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: acid mine drainage versus neutral mine drainage. Mine Water Environ 28:38–49

    Article  Google Scholar 

  • Hosono T, Su CB, Keiokamura K, Taniguchi M (2010) Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan. J Geochem Explor 107:1–8

    Article  Google Scholar 

  • INM (2003) Archives de l’Institut National de Météorologie, région de Jendouba pour la période 1992–2002

  • INM (2004) Archives de l’Institut National de Météorologie, région de Touiref pour la période 1993–2003

  • INM (2007) Archives de l’Institut National de Météorologie, région de Zaghouan pour la période 1996–2006

  • Jemmali N (2011) Le trias du Nord de la Tunisie et les minéralisations associées : minéralogie, géochimie (traces, isotopes, O, C, S, Pb) et modèles génétiques. Thèse PhD, Univ de Tunis El Manar, Tunis, Tunisia

  • Krauskopf KB (1982) Introduction to Geochemistry. McGraw-Hill, 2nd edit, Singapore

  • Lee JS, Chon HT (2006) Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek, Korea. J Geochem Explor 88:37–40

    Article  Google Scholar 

  • Lizarraga-Mendiola L, Gonzalez-Sandoval MR, Duran-Dominguez MC, Marquez-Herrera C (2009) Geochemical behavior of heavy metals in a Zn-Pb-Cu mining area in the state of Mexico (central Mexico). Environ Monit Assess 55:355–372

    Article  Google Scholar 

  • Miller SD, Jeffery JJ, Wong JWC (1991) Use and misuse of the acid-base account for “AMD” prediction. Proc, 2nd International Conf on the Abatement of Acidic Drainage. Montreal Can 3:489–506

    Google Scholar 

  • Mlayah A, Ferrera Da Silva E, Rocha F, Ben Hamza CH, Charef A, Noronha F (2009) The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. J Geochem Explor 102:27–36

    Article  Google Scholar 

  • Navarro Flores A, Martinez Sola F (2010) Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): a soil-leaching column study. Mine Water Environ 29:53–67

    Article  Google Scholar 

  • NRCC (2007) Certified reference material ION-915, lot 407, a natural water from Lake Superior. National Water Research Institute, Environment Canada

    Google Scholar 

  • NRCC (2009) Certified reference material SLRS-5 river water reference material for trace metals. National Research Council, Ottawa

    Google Scholar 

  • Oyarzun R, Lillo J, Lopez-Garcia JA, Esbri JM, Cubas P, Llanos W, Higueras P (2011) The Mazarrón Pb-(Ag)-Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: geochemical data from mine wastes, soils, and stream sediments. J Geochem Explor 109:113–124

    Article  Google Scholar 

  • Perthuisot V (1978) Dynamique et pétrogenèse des extrusions triasiques en Tunisie septentrionale. Thèse PhD, Travaux du Laboratoire de Géologie, 12, Presse de l’Ecole Normale Supérieure de Paris, France

  • Plante B, Benzaazoua M, Bussière B (2011a) Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water Environ 30:2–21

    Article  Google Scholar 

  • Plante B, Benzaazoua M, Bussière B (2011b) Kinetic testing and sorption studies by modified weathering cells to characterize the potential to generate contaminated neutral drainage. Mine Water Environ 30:22–37

    Article  Google Scholar 

  • Plumlee GS, Smith KS, Montour MR, Ficklin WH, Mosier EL (1999) Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types. In: Filipek LH, Plumlee GS (eds), The environmental geochemistry of mineral deposits, Part B: Case studies and research topics, soc of economic geologists, vol 6B, Rev Econ Geol, p 373–432

  • Sahnoun O, Scharer U, Added A, Fernex F, Abdeljaoued S (2009) Metal origin and Pb isotopes in water of the mine-draining Mejerda River system, North Tunisia. Geochem: Explor Environ, Anal 9:369–380

    Article  Google Scholar 

  • Sainfeld P (1952) Les gîtes plombo-zincifères de Tunisie. Annales des Mines et de la Géologie 9, Tunis, Tunisia

  • Servida D, Grieco G, De Capitani L (2009) Geochemical hazard evaluation of sulphide-rich iron mines: the Rio Marina district (Elba Island, Italy). J Geochem Explor 100:75–89

    Article  Google Scholar 

  • Smuda J, Dold B, Friese K (2007) Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. J Geochem Expl 92:97–110

    Article  Google Scholar 

  • Sobek AA, Schuller W, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minerals. US Environmental Protection Agency, EPA-600/2–78–054 PB-280–49), Washington DC, USA

  • Terry B, Monhemius AJ (1983) Acid dissolution of willemite ((Zn, Mn)2 SiO4) and hemimorphite (Zn4Si2O7 (OH)2 H2O). Metall Trans 14B:335–346

    Google Scholar 

  • US NPDWS (National Primary Drinking Water Standards) (2003) Office of Water (4606 M), U.S. EPA Report 816-F-03-016, Washington DC, USA, http://www.epa.gov./safewater. Accessed 12 Sept 2007

  • White WW, Lapakko KA, Cox RL (1999) Static-test methods most commonly used to predict acid-mine drainage: practical guidelines for use and interpretation. In: Plumlee GS and Logsdon MJ (eds), Reviews in economic Geology, the environmental geochemistry of ore deposits, Part A: process tech health issues 6A:289–323

  • Yong RN, Mohamed AMO, Warkentin BP (1992) Principles of contaminant transport in soils. Developments in geotechnical engineering, vol 73, Elsevier Science Publication, Amsterdam, The Netherlands

Download references

Acknowledgments

The authors thank the Associate Editor, Alex Waterhouse, for her helpful comments. In addition, we thank Faysal Souissi, English Department, College of Humanities of Tunis, University of Tunisia, for his kind and thorough reviews of the English language in this manuscript. The ICP and AAS chemical analyses were performed by Raouf Jebali in the INRAP Chemistry Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhia Souissi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souissi, R., Souissi, F., Chakroun, H.K. et al. Mineralogical and Geochemical Characterization of Mine Tailings and Pb, Zn, and Cd Mobility in a Carbonate Setting (Northern Tunisia). Mine Water Environ 32, 16–27 (2013). https://doi.org/10.1007/s10230-012-0208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-012-0208-2

Keywords

Navigation