Skip to main content
Log in

Biosorption and Bioaccumulation of Cu2+ from Aqueous Solution Using Living M. amorphae Isolated from Mine Tailings

Biosorption und Bioakkumulation von Cu2+ aus wässriger Lösung mit lebenden, aus Bergbaurückständen isolierten Mesorhizobium amorphae

Biosorción y Bioacumulación de Cu2+ de soluciones acuosas usando Mesorhizobium amorphae viable aislada de colas de mina

尾矿区活体Mesorhizobium amorphae细胞的Cu2 + 生物吸附与积累作用研究

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Mining generates large amounts of wastewater, which may contain elevated levels of potentially toxic metals. We evaluated the use of live cells of Mesorhizobium amorphae CCNWGS0123 as a new, relatively inexpensive and environment-friendly adsorbent material for removal of toxic metals from aqueous solutions, such as mine tailings leachate. Maximum copper uptake and removal efficiency was attained at a dosage of 0.5 g L−1, a pH of 5.0, an agitation speed of 150 rpm, and at a temperature of 28 °C for an initial Cu2+ concentration of 100 mg L−1; equilibrium was achieved within 30 min. The adsorption isothermal data matched Langmuir and Freundlich isotherms well, with correlation coefficients of 0.931 and 0.932, respectively. FT-IR analysis indicated that many functional groups with a negative charge on the cell surface were involved in the interaction between live CCNWGS0123 and copper ions. Scanning electron microscope results confirmed that there was some copper sediment on the cell surface, causing deformation, aggregation, and cell surface damage. Cu2+ accumulation was related to cell growth, and copper uptake was not only due to cell-surface binding, but also to intracellular accumulation. Live cells of CCNWGS0123 are a new biosorbent that have the potential to be economical when small batches of biomass are used to remove Cu2+ from an aqueous solution.

Bergbau bringt große Mengen Abwässer hervor, das erhöhte Konzentrationen potenziell toxischer Metalle enthalten kann. Wir untersuchten die Verwendung lebender Zellen von Mesorhizobium amorphae CCNWGS0123 als ein neues, relativ kostengünstiges und umweltfreundliches Absorbent zur Entfernung toxischer Metalle aus wässrigen Lösungen, wie beispielsweise Sickerwasser aus Abraumhalden. Dabei wurde die maximale Kupferaufnahme und -entfernung bei einer Dosierung von 0.5 g/L, einem pH-Wert von 5,0, einer Rührgeschwindigkeit von 150 Umdrehungen pro Minute und einer Temperatur von 28 °C mit einer anfänglichen Cu (II) Konzentration von 100 mg/L erzielt. Das Gleichgewicht stellte sich nach 30 min ein. Wir konnten zeigen, dass die Adsorptionsisothermen sehr gut mit Langmuir und Freundlich-Isothermen korrelierten und entsprechende Korrelationskoeffizienten von 0,931 und 0,932 besitzen. Wie die FT-IR Analyse belegte sind viele funktionelle Gruppen mit negativer Ladung auf der Zelloberfläche in die Wechselwirkung von lebenden CCNWGS0123 mit den Kupferionen eingebunden. Weiterhin belegten die Ergebnisse der Rasterelektronenmikroskopie, dass die Kupferablagerungen auf der Zelloberfläche eine Deformierung, Zusammenballung sowie Schäden an der Zelloberfläche verursachten. Die Cu2+-Anreicherung war an das Zellwachstum gebunden und Kupfer wurde nicht nur durch Zelloberflächenbindung aufgenommen, sondern auch interzellulär angereichert. Lebende CCNWGS0123-Zellen sind daher ein neues Biosorptionsmittel, das potentiell wirtschaftlich eingesetzt werden kann, wenn kleine Mengen Biomasse verwandt werden um Cu2+ aus wässrigen Lösungen zu entfernen.

Resumen

La minería genera grandes cantidades de aguas residuales que contienen elevados niveles de metales potencialmente tóxicos. Hemos usado células viable de Mesorhizobium amorphae CCNWGS0123 como un material adsorbente nuevo, relativamente barato y ambientalmente amigable para la remoción de metales tóxicos desde soluciones acuosas, tales como los lixiviados de colas de mina. La máxima eficiencia en la remoción de cobre fue alcanzada a una concentración de 0.5 g L−1, un pH de 5,0, una velocidad de agitación de 150 rpm, y a una temperatura de 28 °C para una concentración inicial de Cu (II) de 100 mg L−1; el equilibrio fue alcanzado dentro de los 30 min. Los datos de las isotermas de adsorción ajustaron con las isotermas de Langmuir y Freundlich, con coeficientes de correlación de 0,931 y 0,932, respectivamente. El análisis por FT-IR indicó que muchos grupos funcionales con carga negativa sobre la superficie celular estuvieron involucrados en la interacción entre CCNWGS0123 y los iones cobre. Los resultados SEM mostraron que hubo algún sedimento de cobre sobre la superficie celular, causando deformación, agregado y daño de la superficie celular. La acumulación de Cu2+ estuvo vinculada al crecimiento celular y la retención de cobre fu debido no sólo a la unión con la superficie sino también a la acumulación intracelular. Las células viables de CCNWGS0123 son un nuevo biosorbente que el potencial de ser económico cuando es usado para remover Cu2+ desde una solución acuosa.

采矿会产生大量富含高浓度毒性金属离子的矿山废水。我们用活体Mesorhizobium amorphae CCNWGS0123细胞作为新型、低成本、环境友好的尾矿淋滤液有毒金属离子吸附剂。在剂量为0.5 g L−1、pH等于5、搅动速度150 rpm、温度28 °C、Cu(II)初始浓度100 mg L−1的条件,反应能够在30分钟内达到平衡,并可获得最大铜离子吸附和去除效率。该反应的吸附等温曲线与Langmuir和Freundlich等温曲线吻合,相关系数分别为0.931和0.932。傅立叶变换红外光谱(FT-IR)分析表明,细胞表面的多种功能团及负电荷参与了活体CCNWGS0123细胞与Cu离子之间的反应。扫描电子显微镜证明,铜在细胞表面的沉积引起了细胞的变形、聚合和表面破坏。C2 + 的富集与去除作用与细胞生长有关,是细胞表面束缚与细胞内积聚共同作用的结果。当需要小型生物群落用于去除溶液中Cu2 + 时,活体CCNWGS0123细胞可作为新型、经济的生物吸附剂。.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aksu Z, Balibek E (2007) Chromium (VI) biosorption by dried Rhizopus arrhizus: Effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145(1–2):210–220

    Article  Google Scholar 

  • Al-Rub FAA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39(11):1767–1773

    Article  Google Scholar 

  • Bai RS, Abraham TE (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopusnigricans. Bioresour Technol 79(1):73–81

    Article  Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater 170(1):487–494

    Article  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  Google Scholar 

  • Chen B-Y, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R (2000) Studies on biosorption of zinc (II) and copper (II) on Desulfovibrio desulfuricans. Int Biodeterior Biodegrad 46(1):11–18

    Article  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Google Scholar 

  • Demir A, Arisoy M (2007) Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis. J Hazard Mater 147(1–2):275–280

    Article  Google Scholar 

  • Dönmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem 38(5):751–762

    Article  Google Scholar 

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2006) Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J Hazard Mater 137(1):293–298

    Article  Google Scholar 

  • Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2010) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709

    Article  Google Scholar 

  • Freundlich H (1907) Ueber die adsorption in loesungen. Z Phys Chem 57:385–470

    Google Scholar 

  • Galli E, Di Mario F, Rapanà P, Lorenzoni P, Angelini R (2003) Copper biosorption by Auricularia polytricha. Lett Appl Microbiol 37(2):133–137

    Article  Google Scholar 

  • Harris PO, Ramelow GJ (1990) Binding of metal ions by particulate biomass Derived from Chlorella vulgerris and Scendesmus quadricauda. Environ Sci Technol 24:220–228

    Article  Google Scholar 

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97(2–3):249–255

    Article  Google Scholar 

  • Hawari AH, Mulligan CN (2006) Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bi. Bioresource Technol 97(4):692–700

    Article  Google Scholar 

  • Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49(11–12):974–977

    Article  Google Scholar 

  • Kandah M, Abu Al-Rub FA, Al-Dabaibeh N (2002) Competitive adsorption of copper-nickel and copper-cadmium binaries on SMW. Eng Life Sci 2(8):237–243

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  • Li H, Lin Y, Guan W, Chang J, Xu L, Guo J, Wei G (2010) Biosorption of Zn (II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J Hazard Mater 179(1–3):151–159

    Google Scholar 

  • Lin Y, Wang X, Wang B, Mohamad O, Wei G (2012) Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotoxicol Environ Saf 77:7–17

    Article  Google Scholar 

  • Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresource Technol 97(3):512–521

    Article  Google Scholar 

  • Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN (2008) Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J Hazard Mater 150(3):604–611

    Article  Google Scholar 

  • Monica OM, Julia WN, Raina MM (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74:3899

    Article  Google Scholar 

  • Olak F, Atar N, Olgun A (2009) Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: kinetic, thermodynamic and equilibrium studies. Chem Eng J 150:122–130

    Google Scholar 

  • Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technol 90:71–74

    Article  Google Scholar 

  • Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption of chromium (VI), cadmium (II) and copper(II) by Pantoea sp. TEM18. Chem Eng J 102(3):249–253

    Article  Google Scholar 

  • Özer A, Özer D, Özer A (2004) The adsorption of copper (II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem 39(12):2183–2191

    Article  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37(3):627–633

    Article  Google Scholar 

  • Rao CS (1992) Environmental Pollution Control Engineering. Wiley Eastern, New Delhi

    Google Scholar 

  • Sarı A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160(2–3):349–355

    Article  Google Scholar 

  • Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL (2006) Biosorption of Cd (II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interf Sci 300(1):100–104

    Article  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Springer, Berlin

    Google Scholar 

  • Sousa AI, Cacador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857

    Article  Google Scholar 

  • Tangaromsuk J, Pokethitiyook P, Kruatrachue M, Upatham ES (2002) Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresource Technol 85(1):103–105

    Article  Google Scholar 

  • Tunali S, Akar T, Özcan AS, Kiran I, Özcan A (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47(3):105–112

    Article  Google Scholar 

  • USEPA (2002) Update of ambient water quality criteria for copper. US EPA 822-R-02-047, Washington DC, USA

  • Villaescusa I, Martínez M, Miralles N (2000) Heavy metal uptake from aqueous solution by cork and yohimbe bark wastes. J Chem Technol Biotechnol 75(9):812–816

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell, Oxford

    Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59(2–3):203–216

    Article  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  Google Scholar 

  • Volesky B, Prasetyo I (1994) Cadmium removal in a biosorption column. Biotechnol Bioeng 43:1010–1015

    Article  Google Scholar 

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol 73(2):133–137

    Article  Google Scholar 

  • Yuan HP, Zhang JH, Lu ZM, Min H, Wu C (2009) Studies on biosorption equilibrium and kinetics of Cd2+ by Streptomyces sp. K33 and HL-12. J Hazard Mater 164(2–3):423–431

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by projects from National Science Foundation of China (31125007, 30970003 and 31070444), and the 863 project of China (2012AA101402). The authors are grateful to Prof. Dr. Abdelshafi Abdelsamee from Suez Canal University; Egypt, Mr. Qiang Baifa from North West Agriculture and Forestry University and to the staff in international school of North West Agriculture and Forestry University in China for there supports. Also, special thanks go to the Department of International Cooperation of the ministry of Science and Technology (MOST) for participation in international training workshops in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehong Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamad, O.A., Hatab, S.R., Liu, Z. et al. Biosorption and Bioaccumulation of Cu2+ from Aqueous Solution Using Living M. amorphae Isolated from Mine Tailings. Mine Water Environ 31, 312–319 (2012). https://doi.org/10.1007/s10230-012-0187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-012-0187-3

Keywords

Navigation