Skip to main content
Log in

Predicting Geochemical Behaviour of Waste Rock with Low Acid Generating Potential Using Laboratory Kinetic Tests

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Prediction of contaminated neutral drainage using laboratory kinetic tests designed for acid mine drainage prediction is challenging because of the low metal concentrations generated by low sulfide oxidation rates. Fresh and weathered samples from the Tio mine waste rock piles were submitted to humidity cell tests. The waste rocks were demonstrated to be non-acid generating in the long term, as interpreted by conservative oxidation-neutralization curves. The results demonstrate that even though the main neutralizing minerals react differently after 25 years of natural weathering (with regard to Ca, Mg, Al, and Si release), the response of the fresh waste rocks during humidity cell leaching was very similar to those of the weathered waste rocks, when considering all the elements related to silicate dissolution, including those implicated in secondary phase precipitation. However, Ni generation was greater in the weathered waste rocks even though sulfide oxidation rates were similar, as Ni sorption properties reach saturation. Although the Ni concentrations from the leachates of humidity cell tests remain below regulated values, they are bound to increase with continued weathering if no preventive or control measures are undertaken at the site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alpers CN, Nordstrom DK (1999) Geochemical modeling of water-rock interactions in mining environments. In: Plumlee GS, Logsdon MJ (eds) Environmental Geochemistry of Mineral Deposits, Reviews in Economic Geology, vol 6A. Soc Econ Geol, Littleton, CO, USA, pp 289–324

    Google Scholar 

  • Alpers CN, Blowes DW, Nordstrom DK, Jambor JL (1994) Secondary minerals and acid mine-water chemistry. In: Blowes DW, Jambor JL (eds) The Environmental Geochemistry of Sulfide Mine-wastes, Mineralogical Assoc of Canada, Short Course Handbook, vol 22. Ottawa, Canada, pp 246–270

    Google Scholar 

  • ASTM Standard D5744-07 (2001) Standard Test method for laboratory weathering of solid materials using a humidity cell. ASTM International. doi:10.1520/D5744-07. Accessible at: www.astm.org

  • Aubertin M, Bussière B, Bernier L (2002) Environnement et gestion des résidus miniers. Manuel sur Cédérom. Les Presse Internationales Polytechnique, Montréal, Canada

    Google Scholar 

  • Benzaazoua M, Bussière B, Dagenais AM, Archambault M (2004) Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46:1086–1101

    Article  Google Scholar 

  • Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–332

    Article  Google Scholar 

  • Blake RE, Walter LM (1999) Kinetics of feldspar and quartz dissolution at 70–80°C and near-neutral pH: effects of organic acids and NaCl. Geochim Cosmochim Acta 63(13–14):2043–2059

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Ch 9.05. Pergamon, Oxford, pp 149–204, ISBN: 978-0-08-043751-4

    Chapter  Google Scholar 

  • Blum AE, Stillings LL (1995) Feldspar dissolution kinetics. Rev Mineral Geochem 31:291–351

    Google Scholar 

  • Bradbury MH, Baeyens B (2009) Sorption modelling on illite Part I: Titration measurements and the sorption of Ni, Co, Eu and Sn. Geochim Cosmochim Acta 73:990–1003

    Article  Google Scholar 

  • Brantley SL, Heinrich DH, Karl KT (2003) Reaction kinetics of primary rock-forming minerals under ambient conditions. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Ch. 5.03. Pergamon, Oxford, pp 73–117, ISBN: 978-0-08-043751-4

    Chapter  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Bussière B (2007) Colloquium 2004: hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can Geotech J 44:1019–1052

    Article  Google Scholar 

  • Bussiere B, Benzaazoua M, Aubertin M, Mbonimpa M (2004) A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage. Environ Geol 45:609–622

    Article  Google Scholar 

  • Bussiere B, Dagenais AM, Villeneuve M, Plante B (2005) Caractérisation environnementale d’un échantillon de stériles de la mine Tio. Technical report. Unité de recherche et de service en technologie minérale, Rouyn-Noranda, Canada

    Google Scholar 

  • Bussière B, Benzaazoua M, Plante B, Pepin G, Aubertin M, Laflamme D (2008) Évaluation du comportement géochimique des stériles de la mine Tio, Havre-Saint-Pierre, Québec. Proc, Symp 2008 sur l’Environnement et les mines. Rouyn-Noranda, Canada, CD-ROM

    Google Scholar 

  • Cama J, Metz V, Ganor J (2002) The effect of pH and temperature on kaolinite dissolution rate under acidic conditions. Geochim Cosmochim Acta 66:3913–3926

    Article  Google Scholar 

  • Cama J, Ayora C, Querol X, Moreno N (2005) Metal adsorption on clays from pyrite contaminated soil. J Environ Eng 131:1052–1056

    Article  Google Scholar 

  • Carroll SA, Knauss KG (2005) Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature. Chem Geol 217:213–225

    Article  Google Scholar 

  • Casey WH, Westrich HR, Massis T, Banfield JF, Arnold GW (1989) The surface of labradorite feldspar after acid hydrolysis. Chem Geol 78:205–218

    Article  Google Scholar 

  • Cruz R, Mendez BA, Monroy M, Gonzalez I (2001) Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Appl Geochem 16:1631–1640

    Article  Google Scholar 

  • Dadhich AS, Beebi SK, Kavitha GV, Chaitanya KVK (2003) Adsorption kinetics of Ni(II) using Kaolinite clay part-I. Asian J Chem 15:772–780

    Google Scholar 

  • D’Espinose De La Caillerie JB, Kermarec M, Clause O (1995) Impregnation of ?-alumina with Ni(II) or Co(II) ions at neutral pH: Hydrotalcite-type coprecipitate formation and characterization. J Am Chem Soc 117:11471–11481

    Article  Google Scholar 

  • Echeverría J, Indurain J, Churio E, Garrido J (2003) Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloids Surf A 218:175–187

    Google Scholar 

  • Eick MJ, Naprstek BR, Brady PV (2001) Kinetics of Ni(II) sorption and desorption on kaolinite: Residence time effects. Soil Sci 166:11–17

    Article  Google Scholar 

  • Elzinga EJ, Sparks DL (2001) Reaction condition effects on nickel sorption mechanisms in illite-water suspensions. Soil Sci Soc Am J 65:94–101

    Article  Google Scholar 

  • Felmy AR, Griven JB, Jenne EA (1984) MINTEQ: a computer program for calculating aqueous geochemical equilibria. NTIS. Springfield, VA, USA

    Google Scholar 

  • Ford RG, Scheinost AC, Scheckel KG, Sparks DL (1999) The link between clay mineral weathering and the stabilization of Ni surface precipitates. Environ Sci Technol 33:3140–3144

    Article  Google Scholar 

  • Frost MT, Grey IE, Harrowfield IR, Mason K (1983) The dependence of alumina and silica contents on the extent of alteration of weathered ilmenites from Western Australia. Mineral Mag 47:201–208

    Article  Google Scholar 

  • Grey IE, Reid AF (1975) The structure of pseudorutile and its role in the natural alteration of pseudorutile. Am Mineral 60:898–906

    Google Scholar 

  • Grey I, MacRae C, Silvester E, Susini J (2005) Behaviour of impurity elements during the weathering of ilmenite. Mineral Mag 69:437–446

    Article  Google Scholar 

  • Gu X, Evans LJ (2007) Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite. J Coll Interf Sci 307:317–325

    Article  Google Scholar 

  • Gu X, Evans LJ (2008) Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochim Cosmochim Acta 72:267–276

    Article  Google Scholar 

  • Gunsinger MR, Ptacek CJ, Blowes DW, Jambor JL, Moncur MC (2006) Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailings impoundment. Appl Geochem 21:1301–1321

    Article  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2008) Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manage 87:46–58

    Article  Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned kettara mine (Morocco): 2. mine waste geochemical behavior. Mine Water Environ 27:160–170

    Article  Google Scholar 

  • Heikkinen PM, Räisänen ML (2008) Mineralogical and geochemical alteration of Hitura sulphide mine tailings with emphasis on nickel mobility and retention. J Geochem Explor 97:1–20

    Article  Google Scholar 

  • Heikkinen P, Räisänen M, Johnson R (2009) Geochemical characterization of seepage and drainage water quality from two sulphide mine tailings impoundments: acid mine drainage vs. neutral mine drainage. Mine Water Environ 28:30–49

    Article  Google Scholar 

  • Hellmann R, Penisson JM, Hervig RL, Thomassin JH, Abrioux MF (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution-reprecipitation. Phys Chem Miner 30:192–197

    Article  Google Scholar 

  • Hodgkinson J, Cox ME, McLoughlin S (2008) Coupling mineral analysis with conceptual groundwater flow modelling: the source and fate of iron, aluminium and manganese in a back-barrier island. Chem Geol 251:77–98

    Article  Google Scholar 

  • Holmström H, Salmon UJ, Carlsson E, Petrov P, Öhlander B (2001) Geochemical investigations of sulfide-bearing tailings at Kristineberg, northern Sweden, a few years after remediation. Sci Total Environ 273:111–133

    Article  Google Scholar 

  • Inskeep WP, Nater EA, Bloom PR, Vandervoort DS, Erich MS (1991) Characterization of laboratory weathered labradorite surfaces using X-ray photoelectron spectroscopy and transmission electron microscopy. Geochim Cosmochim Acta 55:787–800

    Article  Google Scholar 

  • Jambor JL, Blowes DW (1998) Theory and applications of mineralogy in environmental studies of sulfide-bearing mine wastes. In: Cabri LJ, Vaughan DJ (eds) Modern Approaches to Ore and Environmental Mineralogy. Short Course Series vol 27. Mineralogical Assoc of Canada, Ottawa, Canada, pp 367–401

    Google Scholar 

  • Jambor JL, Dutrizac JE, Groat LA, Raudsepp M (2002) Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environ Geol 43(1–2):1–17

    Google Scholar 

  • Jambor JL, Dutrizac JE, Raudsepp M (2007) Measured and computed neutralization potentials from static tests of diverse rock types. Environ Geol 52:1019–1031

    Article  Google Scholar 

  • Janßen A, Golla-Schindler U, Putnis A (2008) The mechanism of ilmenite leaching during experimental alteration in HCl-solution. Proc, EMC 14th European Microscopy Congress. Aachen, Germany, pp 825–826

    Google Scholar 

  • Johnson RH, Blowes DW, Robertson WD, Jambor JL (2000) The hydrogeochemistry of the Nickel Rim mine tailings impoundment, Sudbury, Ontario. J Contam Hydrol 41:49–80

    Article  Google Scholar 

  • KWONG YTJ (1993) Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. MEND report 1.32.1 CANMET, Ottawa, 47 pp

  • Lawrence RW, Scheske M (1997) A method to calculate the neutralization potential of mining wastes. Environ Geol 32:100–106

    Article  Google Scholar 

  • Lawrence RW, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. Proc, 4th International Conf on Acid Rock Drainage (ICARD). Vancouver, Canada, pp 451–464

    Google Scholar 

  • Lener EF (1997) Mineral chemistry of heavy minerals in the Old Hickory Deposit, Sussex and Dinwiddie Counties, Virginia. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA

  • Li MG (2000) Acid rock drainage prediction for low-sulfide, low-neutralization potential mine wastes. Proc, 5th ICARD. Denver, CO, USA, pp 567–580

    Google Scholar 

  • McGregor RG, Blowes DW, Jambor JL, Robertson WD (1998) Mobilization and attenuation of heavy metals within a nickel mine tailings impoundment near Sudbury, Ontario, Canada. Environ Geol 36:305–319

    Article  Google Scholar 

  • MEND (1991) Acid Rock Drainage Prediction Manual. MEND Project 1.16.1b, report by Coastech Research. MEND. Natural Resources Canada, Ottawa, Canada

    Google Scholar 

  • Mücke A, Bhadra Chaudhuri JN (1991) The continuous alteration of ilmenite through pseudorutile to leucoxene. Ore Geol Revi 6:25–44

    Article  Google Scholar 

  • Muir IJ, Nesbitt HW (1992) Controls on differential leaching of calcium and aluminum from labradorite in dilute electrolyte solutions. Geochim Cosmochim Acta 56:3979–3985

    Article  Google Scholar 

  • Muir IJ, Nesbitt HW (1997) Reactions of aqueous anions and cations at the labradorite-water interface: coupled effects of surface processes and diffusion. Geochim Cosmochim Acta 61:265–274

    Article  Google Scholar 

  • Muir IJ, Bancroft MG, Nesbitt WH (1989) Characteristics of altered labradorite surfaces by SIMS and XPS. Geochim Cosmochim Acta 53:1235–1241

    Article  Google Scholar 

  • Muir IJ, Bancroft MG, Shotyk W, Nesbitt WH (1990a) A SIMS and XPS study of dissolving plagioclase. Geochim Cosmochim Acta 54:2247–2256

    Article  Google Scholar 

  • Muir IJ, Bancroft GM, Nesbitt HW (1990b) Analysis of dissolved plagioclase mineral surfaces. Surf Interface Anal 16:581–582

    Article  Google Scholar 

  • Nachtegaal M, Sparks DL (2003) Nickel sequestration in a kaolinite-humic acid complex. Environ Sci Technol 37:529–534

    Article  Google Scholar 

  • Nair AG, Suresh Babu DS, Vivekanandan KL, Vlach SRF (2006) Differential alteration of ilmenite in a tropical beach placer, southern India: microscopic and electron probe evidences. Resour Geol 56:75–81

    Article  Google Scholar 

  • Nair AG, Suresh Babu DS, Damodaran KT, Shankar R, Prabhu CN (2009) Weathering of ilmenite from Chavara deposit and its comparison with Manavalakurichi placer ilmenite, southwestern India. J Asian Earth Sci 34:115–122

    Article  Google Scholar 

  • Nicholson RV (2004) Overview of near neutral pH drainage and its mitigation: results of a MEND study. MEND Ontario workshop, Sudbury, Canada

    Google Scholar 

  • Nugent MA, Brantley SL, Pantano CG, Maurice PA (1998) The influence of natural mineral coatings on feldspar weathering. Nature 395:588–591

    Article  Google Scholar 

  • Oberlin A, Couty R (1970) Conditions of kaolinite formation during alteration of some silicates by water at 200 °C. Clays Clay Miner 18(6):347–356

    Article  Google Scholar 

  • Oelkers EH, Schott J (2001) An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim Cosmochim Acta 65:1219–1231

    Article  Google Scholar 

  • Oelkers EH, Golubev SV, Chairat C, Pokrovsky OS, Schott J (2009) The surface chemistry of multi-oxide silicates. Geochim Cosmochim Acta 73(16):4617–4634

    Article  Google Scholar 

  • Paktunc AD (1999a) Characterization of mine wastes for prediction of acid mine drainage. In: Azcue JM (ed) Environmental Impacts of Mining Activities. Emphasis on Mitigation and Remedial Measures, Springer-Verlag, Berlin, Germany, pp 19–40

    Google Scholar 

  • Paktunc AD (1999b) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39:103–112

    Article  Google Scholar 

  • Peltier E, Allada R, Navrotsky A, Sparks DL (2006) Nickel solubility and precipitation in soils: a thermodynamic study. Clays Clay Miner 54:153–164

    Article  Google Scholar 

  • Pepin G (2009) Évaluation du comportement géochimique de stériles potentiellement générateurs de drainage neutre contaminé à l’aide de cellules expérimentales in situ. Master’s thesis, Dépt des génies civil, géologique et des mines, École Polytechnique de Montréal, Montreal, Canada

  • Pepin G, Bussière B, Aubertin M, Benzaazoua M, Plante B, Laflamme D, Zagury GJ (2008) Field experimental cells to evaluate the generation of contaminated neutral drainage by waste rocks at the Tio mine, Quebec, Canada. Proc, 10th International Mine Water Assoc Congress on Mine Water and the Environment, Czech Republic, pp 309–312

  • Pettit CM, Scharer JM, Chambers DB, Halbert BE, Kirkaldy JL, Bolduc L (1999) Neutral mine drainage. Proceedings, Sudbury Mining and the Environment International Conference, vol 2, pp 829–838

  • Plante B (2005) Comparaison des essais statiques et évaluation de l’effet de l’altération pour des rejets de concentrateur à faible potentiel de génération d’acide. In Dépt des génies civil. géologique et des mines. École Polytechnique de Montréal, Montréal, Canada

    Google Scholar 

  • Plante B (2010) Prédiction du drainage neutre contaminé en Ni: cas de la mine Tio. PhD thesis, UQAT, Québec

  • Plante B, Benzaazoua M, Bussière B, Pepin G, Laflamme D (2008) Geochemical behaviour of nickel contained in Tio mine waste rocks. In: Rapantova N, Hrkal Z (eds) Proceedings, 10th IMWA Congress on Mine Water and the Environment, Czech Republic, p 317–320

  • Plante B, Benzaazoua M, Bussière B, Biesinger MC, Pratt AR (2010a) Study of Ni sorption onto Tio mine waste rock surfaces. Submitted to applied geochemistry

  • Plante B, Benzaazoua M, Bussière B (2010b) Contaminated neutral drainage prediction: kinetic testing and sorption studies by modified weathering cells. In preparation

  • Price WA, Kwong YTJ (1997) Waste rock weathering, sampling and analysis: observations from the British Columbia Ministry of Employment and Investment Database. Proc, 4th ICARD. Vancouver, Canada, pp 31–45

    Google Scholar 

  • Price WA, Morin K, Hutt N (1997) Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: Part II. Recommended procedures for static and kinetic testing. Proc, 4th ICARD, Vancouver, Canada

  • QIT (2005) Preparing a sustainable future—Social and environmental report 2005. Available at: http://www.qit.com/pdf/QIT_BulSocEnv05_ANG.pdf

  • Rietveld HM (1993) The Rietveld Method. Oxford University Press, Oxford, UK

    Google Scholar 

  • Roberts DR, Scheidegger AM, Sparks DL (1999) Kinetics of mixed NI-AL precipitate formation on a soil clay fraction. Environ Sci Technol 33:3749–3754

    Article  Google Scholar 

  • Sapsford DJ, Bowell RJ, Dey M, Williams KP (2009) Humidity cell tests for the prediction of acid rock drainage. Min Eng 22:25–36

    Article  Google Scholar 

  • Scharer JM, Garg V, Smith R, Halbert BE (1991) Use of steady state models for assessing acid generation in pyritic mine tailings. Proceedings, 2nd ICARD, Montréal. CANMET, Ottawa, Vol 2, pp 211–229

  • Scharer JM, Nicholson RV, Halbert B, Snodgrass WJ (1994) A computer program to assess acid generation in pyrite tailings. In: Alpers CN, Blowes DW (eds) Environmental Geochemistry of Sulfide Oxidation, vol 550. Am Chem Soc Symp Series, Washington DC, USA, pp 135–152

    Google Scholar 

  • Scheckel KG, Sparks DL (2001) Division S-2—Soil chemistry: dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces. Soil Sci Soc Am J 65:685–694

    Article  Google Scholar 

  • Scheckel KG, Scheinost AC, Ford RG, Sparks DL (2000) Stability of layered Ni hydroxide surface precipitates–a dissolution kinetics study. Geochim Cosmochim Acta 64:2727–2735

    Article  Google Scholar 

  • Scheidegger AM, Lamble GM, Sparks DL (1997) Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides. J Coll Interf Sci 186:118–128

    Article  Google Scholar 

  • Scheidegger AM, Strawn DG, Lamble GM, Sparks DL (1998) The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study. Geochim Cosmochim Acta 62:2233–2245

    Article  Google Scholar 

  • Scheinost AC, Sparks DL (2000) Formation of layered single- and double-metal hydroxide precipitates at the mineral/water interface: a multiple-scattering XAFS analysis. J Coll Interf Sci 223:167–178

    Article  Google Scholar 

  • Scheinost AC, Ford RG, Sparks DL (1999) The role of Al in the formation of secondary Ni precipitates on pyrophyllite, gibbsite, talc, and amorphous silica: a DRS study. Geochim Cosmochim Acta 63:3193–3203

    Article  Google Scholar 

  • Schott J, Berner RA, Sjöberg EL (1981) Mechanism of pyroxene and amphibole weathering–I. experimental studies of iron-free minerals. Geochim Cosmochim Acta 45:2123–2135

    Article  Google Scholar 

  • Schroeder PA, Le Golvan JJ, Roden MF (2002) Weathering of ilmenite from granite and chlorite schist in the Georgia Piedmont. Am Mineral 87:1616–1625

    Google Scholar 

  • Schweda P, Sjöberg L, Södervall U (1997) Near-surface composition of acid-leached labradorite investigated by SIMS. Geochim Cosmochim Acta 61:1985–1994

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2–78-054. US Environmental Protection Agency, Washington DC, USA, pp 47–50

    Google Scholar 

  • Sparks DL (2001) Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. Geoderma 100:303–319

    Article  Google Scholar 

  • SRK (1989) Draft Acid Rock Drainage Technical Guide. BCAMD Task Force, Vancouver, Canada

    Google Scholar 

  • Stefánsson A (2001) Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0°C to 350°C. Chem Geol 172:225–250

    Article  Google Scholar 

  • Swedlund PJ, Webster JG (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16:503–511

    Article  Google Scholar 

  • Swedlund PJ, Webster JG, Miskelly GM (2003) The effect of SO4 on the ferrihydrite adsorption of Co, Pb and Cd: ternary complexes and site heterogeneity. Appl Geochem 18:1671–1689

    Article  Google Scholar 

  • Swedlund PJ, Webster JG, Miskelly GM (2009) Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: properties of the ternary complex. Geochim Cosmochim Acta 73:1548–1562

    Article  Google Scholar 

  • Thompson HA, Parks GA, Brown GE (2000) Formation and release of cobalt(II) sorption and precipitation products in aging kaolinite-water slurries. J Colloid Interface Sci 222:241–253

    Article  Google Scholar 

  • USEPA (1999) MINTEQA2, Metal speciation equilibrium model for surface and ground water, version 4.0. http://epa.gov/ceampubl/mmedia/minteq/index.html

  • van der Lee J, De Windt L (2002) CHESS Tutorial and cookbook: updated for version 3.0. Users manual Nr. LHM/RD/02/13. École des Mines de Paris, Fontainebleau, France

    Google Scholar 

  • Villeneuve M (2004) Évaluation du comportement géochimique à long terme de rejets miniers à faible potentiel de génération d’acide à l’aide d’essais cinétiques. Dépt des génies civil. géologique et des mines. École Polytechnique de Montréal, Montréal, Canada

    Google Scholar 

  • Villeneuve M, Bussière B, Benzaazoua M, Aubertin M, Monroy M (2003) The influence of kinetic test type on the geochemical response of low acid generating potential tailings. Proc, Tailings and Mine Waste ‘03, Sweets and Zeitlinger. Vail, CO., USA, pp 269–279

    Google Scholar 

  • Villeneuve M, Bussière B, Benzaazoua M (2009) Assessment of interpretation methods for kinetic tests performed on tailings having a low acid generating potential. Proceedings, Securing the Future and 8th ICARD, Skelleftea, Sweden

  • White AF, Peterson ML (1996) Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides. Geochim Cosmochim Acta 60:3799–3814

    Article  Google Scholar 

  • White AF, Peterson ML, Hochella MF Jr (1994) Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim Cosmochim Acta 58:1859–1875

    Article  Google Scholar 

  • White WW III, Lapakko KA, Cox RL (1999) Static-test methods most commonly used to predict acid-mine drainage: practical guidelines for use and interpretation. In: Plumlee GS, Logsdon MJ (eds), The environmental geochemistry of mineral deposits: Part A. Processes, techniques, and health issues, vol 6A, pp 325–338, Rev Econ Geol

  • Wilson MJ (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Min 39(3):233–266

    Article  Google Scholar 

  • Wolery T (1992) EQ3/6: A software package for geochemical modelling of aqueous systems: package overview and installation guide. Technical Report UCRL-MA-110662 pt I, Lawrence Livermore National Lab. Livermore, CA, USA

    Book  Google Scholar 

  • Xiao Y, Lasaga AC (1994) Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis. Geochim Cosmochim Acta 58:5379–5400

    Article  Google Scholar 

  • Xue HB, Jansen S, Prasch A, Sigg L (2001) Nickel speciation and complexation kinetics freshwater by ligand exchange and DPCSV. Environ Sci Technol 35(3):539–546

    Article  Google Scholar 

  • Yamaguchi NU, Scheinost AC, Sparks DL (2002) Influence of gibbsite surface area and citrate on Ni sorption mechanisms at pH 7.5. Clays Clay Miner 50:784–790

    Article  Google Scholar 

  • Yavuz Ö, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952

    Article  Google Scholar 

  • Zakaznova-Herzog VP, Nesbitt HW, Bancroft GM, Tse JS (2008) Characterization of leached layers on olivine and pyroxenes using high-resolution XPS and density functional calculations. Geochim Cosmochim Acta 72(1):69–86

    Article  Google Scholar 

  • Zhang L, Lüttge A (2009) Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: a kinetic modeling study. Geochim Cosmochim Acta 73:6757–6770

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the NSERC Polytechnique-UQAT Chair in Environment and Mine Wastes Management and the NSERC Collaborative Research and Development Grants for funding this project. The authors also thank Donald Laflamme of Rio Tinto, Iron and Titanium, Inc., for the funding and constant support of this project, as well as Genevieve Pepin for providing samples and insight. Alain Perreault, Mélanie Bélanger, and Mathieu Villeneuve of URSTM, UQAT are also acknowledged for their laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Plante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10230_2010_127_MOESM1_ESM.pdf

Online Supplementary Figure 1. Saturation indexes of secondary minerals throughout C1 (a) and C6 (b) humidity cell flushes (PDF 79 kb)

10230_2010_127_MOESM2_ESM.pdf

Online Supplementary Figure 2. Eh–pH diagram in typical conditions of the C6 humidity cell flush for Ni (a), Al (b), and sulfate (c) (modeled on JCHESS with 0.023 mg/L Al, 1.28 mg/L Ca, 0.304 mg/L Mg, 0.007 mg/L Ni, 1.88 mg/L SO4, 4.65 mg/L Si) (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plante, B., Benzaazoua, M. & Bussière, B. Predicting Geochemical Behaviour of Waste Rock with Low Acid Generating Potential Using Laboratory Kinetic Tests. Mine Water Environ 30, 2–21 (2011). https://doi.org/10.1007/s10230-010-0127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-010-0127-z

Keywords

Navigation