Skip to main content
Log in

Contaminant Attenuation Processes at Mine Sites

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The global imprint of acid drainage problems at mine sites is a clear reminder that generally, natural processes do not adequately ameliorate the acidity and metal contamination produced by oxidizing sulfide minerals. Yet at nearly all such sites, natural attenuation processes occur and may contribute to site remediation. Biogeochemical processes can be particularly important in controlling the transport and fate of certain metal and metalloid contaminants, under specific environmental conditions. This paper identifies the major natural attenuation processes that have been documented at mine sites around the world and discusses how monitored natural attenuation is sometimes used in combination with active treatment technologies to achieve site-specific remediation objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Accornero M, Marini L, Ottonello G, Zuccolini MV (2005) The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola Mine (Italy) are mixed with stream waters. Appl Geochem 20:1368–1390

    Article  Google Scholar 

  • Al TA, Martin CJ, Blowes DW (2000) Carbonate-mineral/water interactions in sulfidic-rich mine tailings. Geochim Cosmochim Acta 64:3933–3948

    Article  Google Scholar 

  • Berger AC, Bethke CM, Krumhansl JL (2000) A process model of natural attenuation in drainage from a historic mining district. Appl Geochem 15:655–666

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ (1994) Acid–neutralization mechanisms in inactive mine tailings. In: Blowes DW, Jambor JL (eds). The Environmental Geochemistry of Sulfide Mine Wastes, Mineralogical Assoc of Canada, pp 271–292

    Google Scholar 

  • Casiot C, Lebrun S, Morin G, Bruneel O, Personne JC, Elbaz-Poulichet F (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci Tot Environ 347:122–130

    Article  Google Scholar 

  • Church CD, Wilkin RT, Alpers CN, Rye RO, McClesky RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:10. doi:10.1186/1467-4866-8-10

    Article  Google Scholar 

  • Courtin-Nomade A, Grosbois C, Bril H, Roussel C (2005) Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl Geochem 20:383–396

    Article  Google Scholar 

  • Da Silva EF, Patinha C, Reis P, Fonseca EC, Matos JX, Barrosinho J, Oliveira JMS (2006) Interaction of acid mine drainage with waters and sediments at the Corona stream, Lousal mine (Iberian Pyrite Belt, Southern Portugal). Environ Geol 50:1001–1013

    Article  Google Scholar 

  • Dousova B, Kolousek D, Kovanda F, Machovic V, Novotna M (2005) Removal of As(V) species from extremely contaminated mining water. Appl Clay Sci 28:31–42

    Article  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13–32

    Article  Google Scholar 

  • España JS, Pamo EL, Pastor ES, Andrés JR, Rubi JAM (2005a) The natural attenuation of two acidic effluents in Tharsis and La Zarzr-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environ Geol 49:253–266

    Article  Google Scholar 

  • España JS, Pamo EL, Pastor ES, Andrés JR, Rubi JAM (2006) The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt. Aquat Geochem 12:269–298

    Article  Google Scholar 

  • España JS, Pamo EL, Santofimia S, Aduvire O, Reyes J, Barrettino D (2005b) Acid mine drainage in the Iberian Pyrite Belt: geochemistry, mineralogy, and environmnetal implications. Appl Geochem 20:1320–1356

    Article  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    Article  Google Scholar 

  • Gammons CH, Frandsen AK (2001) Chemical interactions between aqueous sulfide and metals in an anaerobic treatment wetland. Geochem Trans 2:1–15

    Article  Google Scholar 

  • Gammons CH, Metesh JJ, Snyder DM (2005) A survey of the geochemistry of flooded mine shaft water in Butte, Montana. Mine Water Environ 25:100–107

    Article  Google Scholar 

  • Gandy CJ, Smith JWN, Jarvs AP (2007) Attenuation of mining-derived pollutants in the hyporheic zone: A review. Sci Tot Environ 373:435–446

    Article  Google Scholar 

  • Gault AG, Cooke DR, Townsend AT, Charnock JM, Polya DA (2005) Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania. Sci Tot Environ 345:219–228

    Article  Google Scholar 

  • Gunsinger MR, Ptacek CJ, Blowes DW, Jambor JL, Moncur MC (2006) Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailings impoundment. Appl Geochem 21:1301–1321

    Article  Google Scholar 

  • Gustavson KE, Barnthouse LW, Brierley CL, Clark EH, Ward CH (2007) Superfund and Mining Megasites. Environ Sci Technol 41:2667–2672

    Article  Google Scholar 

  • Herbel M, Fendorf S (2006) Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem Geol 228:16–32

    Google Scholar 

  • Hewlett L, Craw D, Black A (2005) Comparison of arsenic and trace metal contents of discharges from adjacent coal and gold mines, Reefton, New Zealand. Mar Freshw Res 56:983–995

    Article  Google Scholar 

  • Jambor JL, Blowes DW, Ptacek CJ (2000) Mineralogy of mine wastes and strategies for remediation. In: Vaughan DJ, Wogelius RA (eds) Environmental mineralogy. Eötvös University Press, New York, pp 255–290

    Google Scholar 

  • Jamieson HE, Alpers CN, Nordstrom DK, Peterson RC (1999) Substitution of zinc and other metals in iron-sulfate minerals at Iron Mountain, California. Proc, Sudbury ’99: mining and the environment II, pp 231–241

  • Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal sites. Water Air Soil Poll 3:47–66

    Google Scholar 

  • Jonsson J, Jonsson J, Lovgren L (2006) Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl Geochem 21:437–445

    Article  Google Scholar 

  • Jurjovec J, Ptacek CJ, Blowes DW (2002) Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim Cosmochim Acta 66:1511–1523

    Article  Google Scholar 

  • Kimura S, Hallberg KB, Johnson DB (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:57–65

    Article  Google Scholar 

  • Kolmert A, Johnson DB (2001) Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J Chem Technol Biotechnol 76:836–843

    Article  Google Scholar 

  • Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbial Ecol 64:329–342

    Article  Google Scholar 

  • Koschorreck M, Wendt-Potthoff K, Geller W (2003) Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Environ Sci Technol 37:1159–1162

    Article  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PS, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  Google Scholar 

  • Langer HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136

    Article  Google Scholar 

  • Lee G, Bigham JM, Faure G (2002) Removal of trace metals by co-precipitation with Fe, Al, and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl Geochem 17:569–581

    Article  Google Scholar 

  • Lee PK, Kang M-J, Choi S-H, Touray J-C (2005) Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl Geochem 20:1687–1703

    Article  Google Scholar 

  • Levy DB, Custis KH, Casey WH, Rock PA (1997) A comparison of metal attenuation in mine residue and overburden material from an abandoned copper mine. Appl Geochem 12:203–211

    Article  Google Scholar 

  • Lowson RT (1982) Aqueous oxidation of pyrite by molecular oxygen. Chem Rev 82:461–497

    Article  Google Scholar 

  • Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3862

    Article  Google Scholar 

  • Malmström ME, Berglund S, Jarsjö J (2008) Combined effects of spatially variable flow and mineralogy on the attenuation of acid mine drainage in ground water. Appl Geochem 23:1419–1436

    Article  Google Scholar 

  • McCarty DK, Moore JN, Marcus WA (1998) Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Appl Geochem 13:165–176

    Article  Google Scholar 

  • McGregor RG, Blowes DW, Jambor JL, Robertson WD (1998) Mobilization and attenuation of heavy metals within a nickel mine tailings impoundment near Sudbury, Ontario, Canada. Environ Geol 36:305–319

    Article  Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    Article  Google Scholar 

  • Morin KA, Cherry JA, Dave NK, Lim TP, Vivyurka AJ (1988) Migration of acidic ground water seepage from uranium-tailings impoundments. 1. Field study and conceptual hydrogeochemical model. J Contam Hydrol 2:271–303

    Article  Google Scholar 

  • Munk L, Faure G, Pride DE, Bigham JM (2002) Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado. Appl Geochem 17:421–430

    Article  Google Scholar 

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulfate weathering. Soil Science Soc of America, New York, pp 37–56

    Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Soc of Economic Geologists, New York, pp 133–160

    Google Scholar 

  • Nordstrom DK, Ball JW (1984) The geochemical behavior of aluminum in acidified surface waters. Science 232:54–56

    Article  Google Scholar 

  • Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineralogical Soc of America, New York, pp 361–390

    Google Scholar 

  • Paktunc AD, Davé NK (2002) Formation of secondary pyrite and carbonate minerals in the Lower Williams Lake tailings basin, Elliot Lake, Ontario Canada. Amer Mineral 87:593–602

    Google Scholar 

  • Parker SR, Gammons CH, Jones CA, Nimick DA (2007) Role of hydrous iron oxide formation in attenuation and diel cycling of dissolved trace metals in a stream affected by acid mine drainage. Water Air Soil Poll Focus 181:247–263

    Article  Google Scholar 

  • Rigby PA, Dobos SK, Cook FJ, Goonetilleke A (2006) Role of organic matter in framboidal pyrite oxidation. Sci Tot Environ 367:847–854

    Article  Google Scholar 

  • Romero FM, Armienta MA, Gonzalez-Hernandez G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment. Appl Geochem 22:109–127

    Article  Google Scholar 

  • Rügner H, Finkel M, Kaschl A, Bittens M (2006) Application of monitored natural attenuation in contaminated land management-A review and recommended approach for Europe. Environ Sci Pol 9:568–576

    Article  Google Scholar 

  • Sidenko NV, Sherriff BL (2005) The attenuation of Ni, Zn, and Cu, by secondary Fe phases of differerent crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Appl Geochem 20:1180–1194

    Article  Google Scholar 

  • Stollenwerk KG (1994) Geochemical interactions between constituents in acidic ground water and alluvium in an aquifer near Globe, Arizona. Appl Geochem 9:353–369

    Article  Google Scholar 

  • Tuttle LH, Dugan PR, Randles CI (1969) Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl Microbiol 17:297–302

    Google Scholar 

  • US Environmental Protection Agency (1994) Acid mine drainage prediction. EPA/530-R–94–036, US EPA Office of Solid Waste, Washington DC, 49 pp

  • US Environmental Protection Agency (2004) Nationwide identification of hardrock mine sites. Report 2004-P–00005, Office of the Inspector General, Washington DC, 81 pp

  • US Environmental Protection Agency (2007a) Monitored natural attenuation of inorganic contaminants in ground water, vol 1. Technical basis for assessment. EPA/600/R-07/139, Office of Research and Development, Cincinnati, OH, 77 pp

  • US Environmental Protection Agency (2007b) Monitored natural attenuation of inorganic contaminants in ground water, vol 2. Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium. EPA/600/R-07/140, Office of Research and Development, Cincinnati, OH, 108 pp

  • Walter AL, Frind EO, Blowes DW, Ptacek CJ, Molson JW (1994) Modelling of multicomponent reactive transport in ground water, 2. Metal mobility in aquifers impacted by acidic mine tailings discharge. Water Resour Res 30:3149–3158

    Article  Google Scholar 

  • Webster JG, Nordstrom DK, Smith KS (1994) Transport and natural attenuation of Cu, Zn, As, and Fe in the acid mine drainage of Leviathan and Bryant Creeks. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Soc, New York, pp 244–260

  • Webster JG, Swedlung PJ, Webster KS (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxyhydroxysulfate. Environ Sci Technol 32:1361–1368

    Article  Google Scholar 

  • Wendt-Potthoff K, Frommichen R, Herzsprung P, Koschorreck M (2002) Microbial Fe(III) reduction in acidic mining lake sediments after addition of an organic substrate and lime. Water Air Soil Poll Focus 2:81–96

    Article  Google Scholar 

  • Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454

    Article  Google Scholar 

  • Zänker H, Moll H, Richter W, Brendler V, Hennig C, Reich T, Kluge A, Huttig G (2002) The colloid chemistry of acid rock drainage solution from an abandoned Zn-Pb-Ag mine. Appl Geochem 17:633–648

    Article  Google Scholar 

  • Zhu C, Hu FQ, Burden DS (2001) Multi-component reactive transport modeling of natural attenuation of an acid ground water plume at a uranium mill tailings site. J Contam Hydrol 52:85–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Wilkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkin, R.T. Contaminant Attenuation Processes at Mine Sites. Mine Water Environ 27, 251–258 (2008). https://doi.org/10.1007/s10230-008-0049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-008-0049-1

Keywords

Navigation