Skip to main content
Log in

A Primal-Dual Formulation for Certifiable Computations in Schubert Calculus

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Formulating a Schubert problem as solutions to a system of equations in either Plücker space or local coordinates of a Schubert cell typically involves more equations than variables. We present a novel primal-dual formulation of any Schubert problem on a Grassmannian or flag manifold as a system of bilinear equations with the same number of equations as variables. This formulation enables numerical computations in the Schubert calculus to be certified using algorithms based on Smale’s \(\alpha \)-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Armentano, Complexity of path-following methods for the eigenvalue problem, Found. Comput. Math. 14 (2014), no. 2, 185–236.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Bertini: Software for numerical algebraic geometry, Available at bertini.nd.edu. doi:10.7274/R0H41PB5.

  3. C. Beltrán and A. Leykin, Certified numerical homotopy tracking, Exp. Math. 21 (2012), no. 1, 69–83.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Beltrán and A. Leykin, Robust certified numerical homotopy tracking, Found. Comput. Math. 13 (2013), no. 2, 253–295.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-Verlag, New York, 1998, With a foreword by Richard M. Karp

    Book  MATH  Google Scholar 

  6. J.-P. Dedieu and M. Shub, Multihomogeneous newton methods, Math. Comp. 69 (2000), no. 231, 1071–1098.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math. (2) 155 (2002), no. 1, 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Fulton, Young tableaux, London Mathematical Society Students Texts, 35, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  9. L. García-Puente, N. Hein, C. Hillar, A. Martín del Campo, J. Ruffo, F. Sottile, and Z. Teitler, The Secant Conjecture in the real Schubert Calculus, Exper. Math. 21 (2012), no. 3, 252–265.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.D. Hauenstein, I. Haywood, and A.C. Liddell, Jr., An a posteriori certification algorithm for Newton homotopies, Proc. ISSAC 2014, ACM, 2014, pp. 248–255.

  11. J.D. Hauenstein, N. Hein, C. Hillar, A. Martín del Campo, Frank Sottile, and Zach Teitler, The Monotone Secant Conjecture in the real Schubert calculus, MEGA11, Stockholm, 2011.

  12. J.D. Hauenstein and F. Sottile, Algorithm 921: alphaCertified: Certifying solutions to polynomial systems, ACM Trans. Math. Softw. 38, (2012) no. 4, 28.

    Article  MathSciNet  Google Scholar 

  13. J.D. Hauenstein and F. Sottile, alphaCertified: Software for certifying numerical solutions to polynomial equations, Available at www.math.tamu.edu/~sottile/research/stories/alphaCertified.

  14. N. Hein, C. Hillar, and F. Sottile, Lower bounds in real Schubert calculus, São Paulo Journal of Mathematics 7 (2013), no. 1, 33–58.

    Article  MathSciNet  Google Scholar 

  15. B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert calculus, J. Symb. Comp. 26 (1998), no. 6, 767–788.

    Article  MathSciNet  MATH  Google Scholar 

  16. S.L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297.

    MathSciNet  MATH  Google Scholar 

  17. A. Leykin and F. Sottile, Galois groups of Schubert problems via homotopy computation, Math. Comp. 78 (2009), no. 267, 1749–1765.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Martín del Campo and F. Sottile, Experimentation in the Schubert calculus, arXiv:1308.3284, 2013.

  19. E. Mukhin and V. Tarasov, Lower bounds for numbers of real solutions in problems of Schubert calculus, 2014, arXiv:1404.7194.

  20. E. Mukhin, V. Tarasov, and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, Ann. of Math. (2) 170 (2009), no. 2, 863–881.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Mukhin, V. Tarasov, and A. Varchenko, Schubert calculus and representations of the general linear group, J. Amer. Math. Soc. 22 (2009), no. 4, 909–940.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Ruffo, Y. Sivan, E. Soprunova, and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds, Exper. Math. 15 (2006), no. 2, 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Schubert, Kalkul der abzählenden Geometrie, Springer-Verlag, 1879, reprinted with an introduction by S. Kleiman, 1979.

    MATH  Google Scholar 

  24. H. Schubert, Anzahl-Bestimmungen für lineare Räume beliebiger Dimension, Acta. Math. 8 (1886), 97–118.

    Article  MathSciNet  Google Scholar 

  25. H. Schubert, Die \(n\) -dimensionalen Verallgemeinerungen der fundamentalen Anzahlen unseres Raums, Math. Ann. 26 (1886), 26–51, (dated 1884).

    MathSciNet  MATH  Google Scholar 

  26. H. Schubert, Losüng des Charakteritiken-Problems für lineare Räume beliebiger Dimension, Mittheil. Math. Ges. Hamburg (1886), 135–155, (dated 1885).

  27. M. Shub and S. Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Amer. Math. Soc. 6 (1993), no. 2, 459–501.

    MathSciNet  MATH  Google Scholar 

  28. S. Smale, Newton’s method estimates from data at one point, The merging of disciplines: new directions in pure, applied, and computational mathematics, Springer, New York, 1986, pp. 185–196.

    Book  Google Scholar 

  29. A.J. Sommese and C. W. Wampler, II, The numerical solution of systems of polynomials, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

    Book  MATH  Google Scholar 

  30. F. Sottile, Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro, Exper. Math. 9 (2000), 161–182.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Sottile, Frontiers of reality in Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 1, 31–71.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Sottile, Real solutions to equations from geometry, University Lecture Series, vol. 57, American Mathematical Society, 2011.

  33. F. Sottile, R. Vakil, and J. Verschelde, Solving Schubert problems with Littlewood-Richardson homotopies, Proc. ISSAC 2010 (Stephen M. Watt, ed.), ACM, 2010, pp. 179–186.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sottile.

Additional information

Communicated by Teresa Krick.

Research of Hauenstein supported in part by NSF Grant DMS-1262428 and DARPA YFA. Research of Hein and Sottile supported in part by NSF Grant DMS-0915211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauenstein, J.D., Hein, N. & Sottile, F. A Primal-Dual Formulation for Certifiable Computations in Schubert Calculus. Found Comput Math 16, 941–963 (2016). https://doi.org/10.1007/s10208-015-9270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9270-z

Keywords

Mathematics Subject Classification

Navigation