Skip to main content
Log in

Numerical Stability in the Presence of Variable Coefficients

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The main concern of this paper is with the stable discretisation of linear partial differential equations of evolution with time-varying coefficients. We commence by demonstrating that an approximation of the first derivative by a skew-symmetric matrix is fundamental in ensuring stability for many differential equations of evolution. This motivates our detailed study of skew-symmetric differentiation matrices for univariate finite-difference methods. We prove that, in order to sustain a skew-symmetric differentiation matrix of order \(p\ge 2\), a grid must satisfy \(2p-3\) polynomial conditions. Moreover, once it satisfies these conditions, it supports a banded skew-symmetric differentiation matrix of this order and of the bandwidth \(2p-1\), which can be derived in a constructive manner. Some applications require not just skew-symmetry, but also that the growth in the elements of the differentiation matrix is at most linear in the number of unknowns. This is always true for our tridiagonal matrices of order 2 but need not be true otherwise, a subject which we explore further. Another subject which we examine is the existence and practical construction of grids that support skew-symmetric differentiation matrices of a given order. We resolve this issue completely for order-two methods. We conclude the paper with a list of open problems and their discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Once we replace Dirichlet with periodic boundary conditions, the problem becomes trivial and it is exceedingly easy to present explicitly skew-symmetric circulant matrices, which approximate the first derivative to any even order.

References

  1. Abramowitz, M. & Stegun, I., eds (1964), Handbook of Mathematical Functions, National Bureau of Standards, Washington, DC.

    MATH  Google Scholar 

  2. Bader, P., Iserles, A., Kropielnicka, K. & Singh, P. (2014), Effective approximation for the semiclassical Schrödinger equation, Found. Comput. Maths 14, 689–720.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi, B. & Razouk, N. (2007/2008), Decay bounds and \({O}(n)\) algorithms for approximating functions of sparse matrices. Electron. Trans. Numer. Anal. 28, 16–39.

  4. Gustafsson, B., Kreiss, H.-O. & Sundström, A. (1972), Stability theory of difference approximations for mixed initial boundary value problems. II, Maths Comp. 26, 649–686.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric Numerical Integration, 2nd edn, Springer, Berlin.

    MATH  Google Scholar 

  6. Hochbruck, M. & Ostermann, A. (2010), Exponential integrators, Acta Numerica 19, 209–286.

    Article  MathSciNet  MATH  Google Scholar 

  7. Horn, R. A. & Johnson, C. R. (1985), Matrix Analysis, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  8. Iserles, A. (2000), How large is the exponential of a banded matrix?, J. New Zealand Maths Soc. 29, 177–192.

  9. Iserles, A. (2008), A First Course in the Numerical Analysis of Differential Equations, 2nd edn, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  10. Iserles, A. (2014), On skew-symmetric differentiation matrices. IMA J. Num. Anal. 34, 435–451.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kassam, A.-K. & Trefethen, L. N. (2005), Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26, 1214–1233.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kitson, A., McLachlan, R. I. & Robidoux, N. (2003), Skew-adjoint finite difference methods on nonuniform grids, New Zealand J. Maths 32, 139–159.

    MathSciNet  MATH  Google Scholar 

  13. Kreiss, H.-O. (1962), Über die stabilitätsdefinition für differenzengleichungen die partielle differentialgleichungen approximieren, BIT 2, 153–181.

    Article  MathSciNet  MATH  Google Scholar 

  14. McLachlan, R. I. & Quispel, G. R. W. (2002), Splitting methods, Acta Numerica 11, 341–434.

    Article  MathSciNet  MATH  Google Scholar 

  15. Reddy, S. & Trefethen, L. N. (1992), Stability of the method of lines, Numer. Math. 62, 235–267.

    Article  MathSciNet  MATH  Google Scholar 

  16. Richtmyer, R. D. & Morton, K. W. (1967), Difference Methods for Initial-Value Problems, 2nd edn, Wiley-Interscience, New York.

    MATH  Google Scholar 

  17. Sheng, Q. (1989), Solving linear partial differential equations by exponential splitting, IMA J. Numer. Anal. 9, 199–212.

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, C.-W. & Osher, S. (1988), Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77, 439–471.

    Article  MathSciNet  MATH  Google Scholar 

  19. Söderlind, G. (2006), The logarithmic norm. History and modern theory, BIT 46, 631–652.

    Article  MathSciNet  MATH  Google Scholar 

  20. Strikwerda, J. C. & Wade, B. A. (1997), A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, in Linear Operators, Banach Center Publ., pp. 339–360.

  21. Trefethen, L. N. (1983), Group velocity interpretation of the stability theory of Gustafsson, Kreiss, and Sundström, J. Comput. Phys. 49, 199–217.

    Article  MathSciNet  MATH  Google Scholar 

  22. Trefethen, L. N. & Embree, M. (2005), Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, NJ.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arieh Iserles.

Additional information

Communicated by Peter Olver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hairer, E., Iserles, A. Numerical Stability in the Presence of Variable Coefficients. Found Comput Math 16, 751–777 (2016). https://doi.org/10.1007/s10208-015-9263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9263-y

Keywords

Mathematics Subject Classification

Navigation