Skip to main content
Log in

The Euclidean Distance Degree of an Algebraic Variety

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low-rank matrices, the Eckart–Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a general point outside the variety. Focusing on varieties seen in applications, we present numerous tools for exact computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Aholt, B. Sturmfels and R. Thomas: A Hilbert scheme in computer vision, Canadian J. Mathematics 65 (2013), no. 5, 961–988.

  2. B. Anderson and U. Helmke: Counting critical formations on a line, SIAM J. Control Optim. 52 (2014) 219–242.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler: Numerically Solving Polynomial Systems with Bertini, SIAM, 2013.

  4. H.-C.G. von Bothmer and K. Ranestad: A general formula for the algebraic degree in semidefinite programming, Bull. London Math. Soc. 41 (2009) 193–197.

    Article  MATH  Google Scholar 

  5. D. Cartwright and B. Sturmfels: The number of eigenvectors of a tensor, Linear Algebra and its Applications 438 (2013) 942–952.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Catanese: Caustics of plane curves, their birationality and matrix projections, in Algebraic and Complex Geometry (eds. A. Frühbis-Krüger et al), Springer Proceedings in Mathematics and Statistics 71 (2014) 109–121.

  7. F. Catanese and C. Trifogli: Focal loci of algebraic varieties I, Commun. Algebra 28 (2000) 6017–6057.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Chu, R. Funderlic, and R. Plemmons: Structured low rank approximation, Linear Algebra Appl. 366 (2003) 157–172.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Cox, J. Little, and D. O’Shea: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992.

    Google Scholar 

  10. J. Draisma and E. Horobeţ: The average number of critical rank-one approximations to a tensor, arxiv:1408.3507.

  11. J. Draisma and J. Rodriguez: Maximum likelihood duality for determinantal varieties, Int. Math. Res. Not. 20 (2014) 5648–5666.

    MathSciNet  Google Scholar 

  12. M. Drton, B. Sturmfels and S. Sullivant: Lectures on Algebraic Statistics, Oberwolfach Seminars, Vol 39, Birkhäuser, Basel, 2009.

    Book  Google Scholar 

  13. L. Ein: Varieties with small dual varieties, I, Invent. Math. 86(1) (1986) 63–74.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Friedland: Best rank one approximation of real symmetric tensors can be chosen symmetric, Front. Math. China 8(1) (2013) 19–40.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Friedland and G. Ottaviani: The number of singular vector tuples and uniqueness of best rank one approximation of tensors, Found. Comput. Math., doi:10.1007/s10208-014-9194-z.

  16. J.-C. Faugère, M. Safey El Din and P.-J. Spaenlehauer: Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): algorithms and complexity, J. Symbolic Comput. 46 (2011) 406–437.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Fulton: Introduction to Toric Varieties, Princeton University Press, 1993.

  18. W. Fulton: Intersection Theory, Springer, Berlin, 1998.

    Book  MATH  Google Scholar 

  19. I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky: Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.

    Book  MATH  Google Scholar 

  20. D. Grayson and M. Stillman: Macaulay2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.

  21. D. Grayson, M. Stillman, S. Strømme, D. Eisenbud, and C. Crissman: Schubert2, computations of characteristic classes for varieties without equations, available at www.math.uiuc.edu/Macaulay2/.

  22. R. Hartley and P. Sturm: Triangulation, Computer Vision and Image Understanding: CIUV (1997) 68(2): 146–157.

    Article  Google Scholar 

  23. R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.

    Google Scholar 

  24. D. Hilbert and S. Cohn-Vossen: Anschauliche Geometrie, Springer-Verlag, Berlin, 1932.

    Book  MATH  Google Scholar 

  25. A. Holme: The geometric and numerical properties of duality in projective algebraic geometry, Manuscripta Math. 61 (1988) 145–162.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Hoşten, A. Khetan, and B. Sturmfels: Solving the likelihood equations, Foundations of Computational Mathematics 5 (2005) 389–407.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Huh and B. Sturmfels: Likelihood geometry, in Combinatorial Algebraic Geometry (eds. Aldo Conca et al.), Lecture Notes in Mathematics 2108, Springer, (2014) 63–117.

  28. N.V. Ilyushechkin: The discriminant of the characteristic polynomial of a normal matrix, Mat. Zametki 51 (1992) 16–23; translation in Math. Notes 51(3-4) (1992) 230–235.

  29. A. Josse and F. Pène: On the degree of caustics by reflection, Commun. Algebra 42 (2014), 2442–2475.

    Article  MATH  Google Scholar 

  30. A. Josse and F. Pène: On the normal class of curves and surfaces, arXiv:1402.7266.

  31. M. Laurent: Cuts, matrix completions and graph rigidity, Mathematical Programming 79 (1997) 255–283.

  32. L.-H. Lim: Singular values and eigenvalues of tensors: a variational approach, Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), 1 (2005), 129–132.

  33. E. Miller and B. Sturmfels: Combinatorial Commutative Algebra, Graduate Texts in Mathematics 227, Springer, New York, 2004.

    Google Scholar 

  34. The Online Encyclopedia of Integer Sequences, http://oeis.org/.

  35. G. Ottaviani, P.J. Spaenlehauer, B. Sturmfels: Exact solutions in structured low-rank approximation, SIAM Journal on Matrix Analysis and Applications 35 (2014) 1521–1542.

  36. P.A. Parrilo: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD Thesis, Caltech, Pasadena, CA, May 2000.

  37. R. Piene: Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 247–276.

    MathSciNet  MATH  Google Scholar 

  38. P. Rostalski and B. Sturmfels: Dualities, Chapter 5 in G. Blekherman, P. Parrilo and R. Thomas: Semidefinite Optimization and Convex Algebraic Geometry, pp. 203–250, MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2013.

  39. G. Salmon: A Treatise on the Higher Plane Curves, Dublin, 1879, available on the web at http://archive.org/details/117724690.

  40. A. Stegeman and P. Comon: Subtracting a best rank-1 approximation does not necessarily decrease tensor rank, Linear Algebra Appl. 433 (2010) 1276–1300.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Stewénius, F. Schaffalitzky, and D. Nistér: How hard is 3-view triangulation really?, Proc. International Conference on Computer Vision, Beijing, China (2005) 686–693.

  42. B. Sturmfels: Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics 97, Amer. Math. Soc., Providence, 2002.

  43. T. Tao and V. Vu: A central limit theorem for the determinant of a Wigner matrix, Adv. Math. 231 (2012) 74–101.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Thomassen, P. Johansen, and T. Dokken: Closest points, moving surfaces, and algebraic geometry, Mathematical methods for curves and surfaces: Tromsø, 2004, 351–362, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005

  45. C. Trifogli: Focal loci of algebraic hypersurfaces: a general theory, Geometriae Dedicata 70 (1998) 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Weyman: Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, 14, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

Download references

Acknowledgments

Jan Draisma was supported by a Vidi Grant from the Netherlands Organisation for Scientific Research (NWO), and Emil Horobeţ by the NWO Free Competition Grant Tensors of bounded rank. Giorgio Ottaviani is member of GNSAGA-INDAM. Bernd Sturmfels was supported by the NSF (DMS-0968882), DARPA (HR0011-12-1-0011), and the Max-Planck Institute für Mathematik in Bonn, Germany. Rekha Thomas was supported by the NSF (DMS-1115293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Draisma.

Additional information

Communicated by James Renegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draisma, J., Horobeţ, E., Ottaviani, G. et al. The Euclidean Distance Degree of an Algebraic Variety. Found Comput Math 16, 99–149 (2016). https://doi.org/10.1007/s10208-014-9240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9240-x

Keywords

Mathematics Subject Classification

Navigation