Skip to main content
Log in

Instance Optimality of the Adaptive Maximum Strategy

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove that the standard adaptive finite element method with a (modified) maximum marking strategy is instance optimal for the total error, being the square root of the squared energy error plus the squared oscillation. This result will be derived in the model setting of Poisson’s equation on a polygon, linear finite elements, and conforming triangulations created by newest vertex bisection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Bänsch, Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg. 3 (1991), 181–191.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Binev, Adaptive methods and near-best tree approximation, Oberwolfach Reports, vol. 29, 2007, pp. 1669–1673.

    Google Scholar 

  4. I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), no. 1, 75–102.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), 1106–1124.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), 275–288.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. Comput. 16 (1995), 210–227.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), 466–488.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element methods, SIAM Review 44 (2002), 631–658.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Morin, K. G. Siebert, and A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707–737.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. H. Nochetto, K. G. Siebert, and A. Veeser, Theory of adaptive finite element methods: An introduction, Multiscale, Nonlinear and Adaptive Approximation (Ronald A. DeVore and Angela Kunoth, eds.), Springer, 2009, pp. 409–542.

  14. A. Schmidt and K. G. Siebert, Design of adaptive finite element software. The finite element toolbox ALBERTA, Lecture Notes in Computational Science and Engineering 42. Springer 2005 (English).

  15. R.P. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.P. Stevenson, The completion of locally refined simplicialpartitions created by bisection, Math. Comp. 77 (2008), no. 261, 227–241 (electronic).

  17. L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. T. Traxler, An algorithm for adaptive mesh refinement in n dimensions, Computing 59 (1997), 115–137.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Adv. Numer. Math., John Wiley, Chichester, UK, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Stevenson.

Additional information

Communicated by Wolfgang Dahmen.

Appendix: A Slightly Modified Marking

Appendix: A Slightly Modified Marking

In this section, we propose a routine MARK, resorting to slightly modified accumulated indicators, that can be implemented in \({\mathcal {O}}(\#\mathcal {P}_k)\) operations. The important fact is that Proposition 5.1 remains valid, which ensures the instance optimality in Sect. 7 also for this modified marking step.

To this end, we first compute a modified maximal accumulated indicator \(\bar{{E}}_{\mathcal {P}_k}^2\). This value can be determined with the help of the following recursive routine.

Algorithm 7.1

(Maximal Indicator) Set \(\bar{{E}}_{\mathcal {P}_k}^2:=0\) and call \(\mathsf max-ind (P,0)\) for all \(P\in (\mathcal {P}_k^{++}\setminus \mathcal {P}_k)\) with no parents in \(\mathcal {P}_k^{++}\setminus \mathcal {P}_k\).

figure c

In general, we have \(\bar{{E}}_{\mathcal {P}_k}^2\ne \bar{\mathcal {E}}_{\mathcal {P}_k}^2\), since \(C\in \mathcal {P}_k^{++}\setminus \mathcal {P}_k\) may have two parents \(P,P' \in \mathcal {P}_k^{++}\setminus \mathcal {P}_k\). However, such a \(C\) cannot have children in \(\mathcal {P}^{++}\setminus \mathcal {P}\) as is illustrated in Fig. 8, and so we conclude that

$$\begin{aligned} \bar{{E}}_{\mathcal {P}_k}^2\ge \frac{1}{2}\bar{\mathcal {E}}_{\mathcal {P}_k}^2. \end{aligned}$$
Fig. 8
figure 8

\({\mathcal {T}}(\mathcal {P})\) (solid lines), \(P,P',Q \in \mathcal {P}^{++}\setminus \mathcal {P}=\mathsf{\mathrm {midpt} (\mathcal {S}({\mathcal {T}}(\mathcal {P})))}\) with \(\{P,P'\} = \mathtt{parent}(Q)\), and \(\{\Box \}=\mathtt{child}(Q).\)

Next, the sets \({\mathcal {M}}_{k}\) and \(\widetilde{\mathcal {M}}_{k}\) are determined by running the following routine.

Algorithm 7.2

(Marking) Set \({\mathcal {M}}_{k}:=\widetilde{\mathcal {M}}_{k}:=\emptyset \) and call \(\mathsf accum-est (P,0)\) for all \(P \in \mathcal {P}_k^{++}\setminus \mathcal {P}_k\) with no parents in \(\mathcal {P}_k^{++}\setminus \mathcal {P}_k\).

figure d

One verifies that \({\mathcal {M}}_{k}, \widetilde{\mathcal {M}}_{k}\subset \mathcal {P}_k^{++}\setminus \mathcal {P}_k\), \(\mathcal {P}_k \oplus {\mathcal {M}}_{k}= \mathcal {P}_k \cup \widetilde{\mathcal {M}}_{k}\), and

$$\begin{aligned} {\mathcal {E}}_{\mathcal {P}_k}^2 \big ( (\mathcal {P}_k \oplus {\mathcal {M}}_{k})\setminus \mathcal {P}_k\big ) \ge \mu \,\# {\mathcal {M}}_{k}\, \bar{{E}}_{\mathcal {P}_k}^2\ge \frac{1}{2}\mu \,\# {\mathcal {M}}_{k}\, \bar{\mathcal {E}}_{\mathcal {P}_k}^2; \end{aligned}$$

i.e. Proposition 5.1 is still valid.

Finally, the work needed for this evaluation of MARK scales linearly with \(\# \mathcal {P}_k\). Indeed, the number of times that a \(P \in \mathcal {P}_k^{++}\setminus \mathcal {P}_k\) is accessed by the flow of computation is proportional to the number of calls \(\text {accum-est}(P,\cdot )\) (being one), plus the number of its children in \(\mathcal {P}_k^{++}\setminus \mathcal {P}_k\) (being uniformly bounded).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diening, L., Kreuzer, C. & Stevenson, R. Instance Optimality of the Adaptive Maximum Strategy. Found Comput Math 16, 33–68 (2016). https://doi.org/10.1007/s10208-014-9236-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9236-6

Keywords

Mathematics Subject Classification

Navigation