Skip to main content
Log in

On Post-Lie Algebras, Lie–Butcher Series and Moving Frames

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 24 September 2018

This article has been updated

Abstract

Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. These algebras have been extensively studied in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on Euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with Euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan’s method of moving frames. Lie–Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie–Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie–Butcher series are related to invariants of curves described by moving frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 24 September 2018

    The correct formula for the dimension of graded components

Notes

  1. The MC form can also be defined by right translation, but the left form is more convenient for moving frames.

  2. Trees with different orderings of the branches are considered different, as when pictured in the plane.

  3. Various notations for similar grafting products are found in the literature, e.g. uv=u[v]=uv.

References

  1. A.A. Agrachev, R.V. Gamkrelidze, Chronological algebras and nonstationary vector fields, J. Math. Sci. 17(1), 1650–1675 (1981).

    Article  Google Scholar 

  2. H. Berland, Isotropy in geometric integration. PhD thesis, Master’s thesis, Norwegian University of Science and Technology (2002).

  3. H. Berland, B. Owren, Algebraic structures on ordered rooted trees and their significance to Lie group integrators, in Group Theory and Numerical Analysis. CRM Proceedings & Lecture Notes, vol. 39 (AMS, Providence, 2005), pp. 49–63.

    Google Scholar 

  4. C. Brouder, Runge–Kutta methods and renormalization, Eur. Phys. J. C 12(3), 521–534 (2000).

    Article  Google Scholar 

  5. J.C. Butcher, Coefficients for the study of Runge–Kutta integration processes, J. Aust. Math. Soc. 3(02), 185–201 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. Butcher, An algebraic theory of integration methods, Math. Comput. 26(117), 79–106 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  7. É.E. Cartan, J.A. Schouten, On the geometry of the group-manifold of simple and semi-simple groups. Koninklijke Akademie van Wetenschappen te Amsterdam (1926).

  8. A. Cayley, On the theory of the analytical forms called trees, Philos. Mag. Ser. 4 13(85) (1857).

  9. E. Celledoni, B. Owren, On the implementation of Lie group methods on the Stiefel manifold, Numer. Algorithms 32(2), 163–183 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001(8), 395–408 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203–242 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. P.E. Crouch, R. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci. 3(1), 1–33 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Degeratu, M. Ivan, Linear connections on lie algebroids, in Proceedings of the 5th Conference of Balkan Society of Geometers (BSG, Bucharest, 2006), pp. 44–53.

    Google Scholar 

  14. K. Ebrahimi-Fard, D. Manchon, The Magnus expansion, trees and Knuth’s rotation correspondence. arXiv:1203.2878 (2012).

  15. M. Fels, P.J. Olver, Moving coframes: I. A practical algorithm, Acta Appl. Math. 51(2), 161–213 (1998).

    Article  MathSciNet  Google Scholar 

  16. M. Fels, P.J. Olver, Moving coframes: II. Regularization and theoretical foundations, Acta Appl. Math. 55(2), 127–208 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  17. R.B. Gardner, The Method of Equivalence and Its Applications (SIAM, Philadelphia, 1989).

    Book  MATH  Google Scholar 

  18. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78(2), 267–288 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Goze, E. Remm, Lie-admissible algebras and operads, J. Algebra 273(1), 129–152 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Grossman, R.G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126(1), 184–210 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Hairer, G. Wanner, On the Butcher group and general multi-value methods, Computing 13(1), 1–15 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000).

    Article  Google Scholar 

  23. N. Jacobson, Lie Algebras (Dover, New York, 1979).

    Google Scholar 

  24. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2 (Interscience, New York, 1969).

    MATH  Google Scholar 

  25. D. Lewis, P.J. Olver, Geometric integration algorithms on homogeneous manifolds, Found. Comput. Math. 2(4), 363–392 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Lewis, N. Nigam, P.J. Olver, Connections for general group actions, Commun. Contemp. Math. 7, 341–374 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  27. J.L. Loday, M.O. Ronco, Combinatorial Hopf algebras, in Quanta of Maths. Clay Mathematics Proceedings, vol. 11 (2010).

    Google Scholar 

  28. O. Loos, Symmetric Spaces: General Theory, vol. 1 (WA Benjamin, 1969).

  29. A. Lundervold, H.Z. Munthe-Kaas, Backward error analysis and the substitution law for Lie group integrators, Found. Comput. Math. 1–26 (2011).

  30. A. Lundervold, H.Z. Munthe-Kaas, Hopf algebras of formal diffeomorphisms and numerical integration on manifolds, Contemp. Math. 539, 295–324 (2011).

    Article  MathSciNet  Google Scholar 

  31. A. Lundervold, H.Z. Munthe-Kaas, On algebraic structures of numerical integration on vector spaces and manifolds, in IRMA Lectures in Mathematics and Theoretical Physics (2013).

    Google Scholar 

  32. K.C.H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, vol. 213 (Cambridge University Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  33. E.L. Mansfield, A Practical Guide to the Invariant Calculus (Cambridge University Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  34. H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods, BIT Numer. Math. 35(4), 572–587 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT Numer. Math. 38(1), 92–111 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Munthe-Kaas, High order Runge–Kutta methods on manifolds, Appl. Numer. Math. 29(1), 115–127 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Munthe-Kaas, S. Krogstad, On enumeration problems in Lie–Butcher theory, Future Gener. Comput. Syst. 19(7), 1197–1205 (2003).

    Article  Google Scholar 

  38. H. Munthe-Kaas, B. Owren, Computations in a free Lie algebra, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 357(1754), 957 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Munthe-Kaas, W. Wright, On the Hopf algebraic structure of Lie group integrators, Found. Comput. Math. 8(2), 227–257 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Munthe-Kaas, A. Zanna, Numerical integration of differential equations on homogeneous manifolds, in Foundations of Computational Mathematics, ed. by F. Cucker, M. Shub (1997).

    Google Scholar 

  41. J.C. Novelli, J.Y. Thibon, Parking functions and descent algebras, Ann. Comb. 11(1), 59–68 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  42. P.J. Olver, Equivalence, Invariants, and Symmetry (Cambridge University Press, Cambridge, 1995).

    Book  MATH  Google Scholar 

  43. P.J. Olver, A survey of moving frames, Comput. Algebra Geom. Algebra Appl. 105–138 (2005).

  44. B. Owren, A. Marthinsen, Runge–Kutta methods adapted to manifolds and based on rigid frames, BIT Numer. Math. 39(1), 116–142 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Reutenauer, Free Lie Algebras (Oxford University Press, London, 1993).

    MATH  Google Scholar 

  46. R.W. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program (Springer, Berlin, 1997).

    MATH  Google Scholar 

  47. N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences. http://oeis.org/A022553.

  48. M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 2, 3rd edn. Publish or Perish (2005).

  49. B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208(2), 699–725 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  50. E.B. Vinberg, The theory of convex homogeneous cones, Trans. Mosc. Math. Soc. 12, 340–403 (1963).

    MATH  Google Scholar 

  51. A. Zanna, H.Z. Munthe-Kaas, Generalized polar decompositions for the approximation of the matrix exponential, SIAM J. Matrix Anal. Appl. 23(3), 840–862 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Kurusch Ebrahimi-Fard, Dominique Manchon and Olivier Verdier for valuable discussions regarding the topics of this paper, and thanks to Jon Eivind Vatne for explaining operads and for pointing us to the work of Bruno Vallette. Finally, many thanks to Matthias Kawski and the anonymous referees for their careful reading, and for their many suggested improvements of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Z. Munthe-Kaas.

Additional information

Communicated by Arieh Iserles.

Dedicated to Peter Olver in celebration of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munthe-Kaas, H.Z., Lundervold, A. On Post-Lie Algebras, Lie–Butcher Series and Moving Frames. Found Comput Math 13, 583–613 (2013). https://doi.org/10.1007/s10208-013-9167-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-013-9167-7

Keywords

Mathematics Subject Classification

Navigation